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Abstract

A graph which is isomorphic to its complement is said to be a self-comple-
mentary graph, or sc-graph for short. These graphs have a high degree of
structure, and yet they are far from trivial. Suffice to say that the problem
of recognising self-complementary graphs, and the problem of checking two
sc-graphs for isomorphism, are both equivalent to the graph isomorphism
problem.

We take a look at this and several other results discovered by the hun-
dreds of mathematicians who studied self-complementary graphs in the four
decades since the seminal papers of Sachs (Über selbstkomplementäre graphen,
Publ. Math. Drecen 9 (1962) 270–288. MR 27:1934), Ringel (Selbstkomple-
mentäre Graphen, Arch. Math. 14 (1963) 354–358. MR 25:22) and Read
(On the number of self-complementary graphs and digraphs, J. Lond. Math.
Soc. 38 (1963) 99–104. MR 26:4339).

The areas covered include distance, connectivity, eigenvalues and colour-
ing problems in Chapter 1; circuits (especially triangles and Hamiltonicity)
and Ramsey numbers in Chapter 2; regular self-complementary graphs and
Kotzig’s conjectures in Chapter 3; the isomorphism problem, the reconstruc-
tion conjecture and self-complement indexes in Chapter 4; self-complement-
ary and self-converse digraphs, multi-partite sc-graphs and almost sc-graphs
in Chapter 5; degree sequences in Chapter 6, and enumeration in Chapter 7.

This is a manual more than a survey, as it contains all the results I could
find, and quite a few proofs. There are also a few original results. For any
queries, comments or suggestions, please contact me at afarrugia at alumni
dot uwaterloo dot ca.
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all the results apply to finite (self-complementary) graphs without loops or
multiple edges. In particular, we use v ∼ w to denote that two vertices v
and w are adjacent. We often use |E(G)| for the number of edges of G, as m
or m(G) may be used for different purposes. For any subset X of V (G), we
denote by G[X] the subgraph induced by X, and E[X] the edge-set of G[X].
For disjoint subsets X, Y , we use G[X,Y ] to denote the bipartite subgraph
with vertex set X ∪ Y and edge set E[X,Y ] = {uv ∈ E(G)|u ∈ X, v ∈ Y }.
We define a clique to be a complete subgraph that is not contained in a larger
complete subgraph. We use ¤ to denote that a proof has ended, or that no
proof will be given.

We refer to publications either by their bibliographical number, e.g. [341],
or, in Theorems, by author and year, e.g. [Sachs 1962]. We sometimes state
two analogous definitions simultaneously, using square brackets for clarity,
e.g. “A signed [marked] graph is a graph with a + or − sign assigned to each
edge [vertex].”

0.4. Where there is no ambiguity, we abbreviate “self-complementary graph”
or “self-converse graph” to sc-graph. We could have used “s.c. graph” or “s-c
graph”, but the chosen notation, due to Rosenberg [331], is useful because
it can be easily extended to related concepts, as in Table 1. Some of the

Type of graph Abbreviation
self-complementary graph sc-graph

regular self-complementary graph rsc-graph
strongly regular self-complementary graph srsc-graph
vertex transitive self-complementary graph vtsc-graph

almost self-complementary graph asc-graph
bipartite self-complementary graph bipsc-graph
tripartite self-complementary graph tripsc-graph
r-partite self-complementary graph r-psc-graph

t-complementary graph t-c-graph

Table 1: Abbreviations used.

notation is adapted from that of Gangopadhyay (c.f. [135]). In the case of
tournaments we almost always use the abbreviated form, sc-tournaments, to
underline the fact that a self-complementary tournament is the same thing
as a self-converse tournament.
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We note that “bipartite self-complementary graph” is defined as in 5.13.
We never take it to mean “a self-complementary graph which happens to
be bipartite” — this is not an interesting concept as there is only one such
graph, namely P4. Similar considerations hold for tripartite and r-partite
self-complementary graphs.

Although isomorphisms from a graph to its complement are normally
called complementing permutations, there are other names for them—Kotzig
[227] called them isomorphism permutations, while other authors (e.g. Eplett
[112], P.S. Nair [266], Balconi and Torre [31]) call them anti-automorphisms.
We use antimorphism, which is both meaningful and easy to pronounce.
Theorem 1.30 gives added significance to this terminology.

Layout of the thesis

0.5. Chapter 1 describes the fundamental structural properties of sc-graphs
and their antimorphisms; it also contains several miscellaneous results which
do not warrant a chapter to themselves. Chapter 2 covers results on paths,
circuits and cliques in self-complementary graphs, while Chapter 3 is about
regular sc-graphs and the very strong properties they enjoy (or suffer from).

Chapter 4, Self-Complementarity, discusses the problem of generating
self-complementary graphs, and distinguishing them from each other and
from non-self-complementary graphs. It also shows how sc-graphs have been
either used as tools, or investigated in their own right, in such areas as the
isomorphism problem, the reconstruction conjecture, codes and information.
Chapter 5 describes several related concepts such as multipartite self-comple-
mentary graphs and almost self-complementary graphs.

The final two chapters are meant as a useful reference guide to results
on degree sequences and enumeration of sc-graphs. Virtually no proofs are
presented in these two chapters, but the enumeration results are useful even
to those not particularly interested in enumeration, because they show that
many self-complementary structures described in Chapter 5 are linked not
only by an intuitive resemblance, but also by very similar counting formulas.

0.6. All the work here is attributed to its original author (or authors, if it
was discovered more than once), except for some simple results which are
known and used long before anyone bothers to state them formally. There is
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also some original work:

• we showed that any sc-graph on n ≥ 4 vertices is contained in a sc-
graph on n+ 4 vertices with diameter 3 but no end-vertices (1.28)

• we point out that known results imply a partial generalisation of Turán’s
theorem, namely that every graph on n ≥ 6 vertices with m ≥ n(n−1)

4

edges must contain a C3, C4, C5 or C6 (2.2)

• we pointed out certain difficulties in a construction of Nair and Vi-
jayakumar, and resolved them after some correspondence with these
two authors (3.40)

• we used a graph found by Hartsfield [198] to construct an infinite family
of sc-graphs whose antimorphisms have unequal cycle lengths (3.45)

• we characterised disconnected bipsc-graphs with isolated vertices (5.24)

• we obtained a simpler proof of a result by Gangopadhyay and Rao
Hebbare [138] on the diameter of connected bipsc-graphs, also obtaining
a result on the radius of these graphs (5.28)

We also simplified or extended certain results:

• we simplified a proof by Wojda and Zwonek [391], pointing out that it
implies a known result on circulant graphs (1.70)

• two proofs by Colbourn and Colbourn [93, 94] are slightly simplified
(4.8, 4.10)

• we showed that an important theorem by Rao [306] on sc-graphs can
be extended to sc-digraphs by making use of a result by Robinson [324]
(5.7)

• Sachs’ [341] and Ringel’s [320] theorem on the structure of antimor-
phisms of sc-graphs (that is, cyclic 2-morphisms) is extended to cyclic
t-morphisms, thus obtaining an existence result for cyclically t-comple-
mentary graphs, and showing up an error in two published theorems
on t-complementary graphs (5.53)
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What was left out, and what wasn’t

0.7. What are we referring to when we mention self-complementary struc-
tures? There are many ways of generalising self-complementary graphs, giv-
ing a spectrum of related concepts which stretches out until we have lost the
“feel” of dealing with anything related to sc-graphs. A line has to be drawn
somewhere.

The first generalisation is that of going from graphs to multigraphs, di-
graphs, relations (digraphs with loops), hypergraphs and so on. All of these
have self-complementary versions defined in the obvious way, and the simi-
larities are obvious and close.

0.8. The next generalisation concerns the concept of complement itself. The
complement of a graph G can be defined more precisely as G = Kn−G, where
|V (G)| = n. We can call this the complement of G with respect to Kn. In
general, for any graph H, and any subgraph G ⊆ H with V (G) = V (H), we
can define the complement of G with respect to H as G = H −G. When H
is a complete or almost complete graph (e.g. a complete digraph, a complete
multi-partite graph, or Kn − e), and G ∼= H − G, the resemblance to sc-
graphs is quite obvious; we deal with these graphs in 5.13 – 5.34. However,
an important feature has already been lost — the generalised complement is
not always unique, that is, we could have G1

∼= G2 but H − G1 6∼= H − G2,
even when H is, say, a complete bipartite graph. We do not consider at all
the case where H is not complete or almost complete.

0.9. Self-complementary graphs are interesting not only because of their
links with other areas of graph theory (outlined in Chapter 4) but also be-
cause they form an infinite, and yet scarce, class of graphs, and have strong
structural properties. For example, the classical self-complementary graphs
must have exactly 1

2

(

n
2

)

edges and diameter 2 or 3; they exist for every feasi-
ble value of n, and yet the proportion of sc-graphs to graphs with the same
number of vertices (and even with the same number of edges), tends to 0
(see 7.15).

Some authors (e.g. Nara [267], Gangopadhyay [141, 145]) considered what
they called self-placeable or self-packing graphs, that is, graphs isomorphic
to a subgraph of their complement. While this class of graphs includes all
of the concepts described above as special cases, we consider it to be too far
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from the spirit of sc-graphs, and also too large and amorphous (for example,
it is known that all graphs with n vertices and at most n − 2 edges are
self-packing).

0.10. A further generalisation is to look at self-complementary graphs as
factorisations of Kn into two isomorphic subgraphs, and then consider what
happens when we factorise Kn (or some other graph) into any number of
isomorphic subgraphs. Isomorphic factorisations of graphs have been exten-
sively studied, and, if only for this reason, our overview of the area (5.45 –
5.59) is rather compact. To do justice to it would require another thesis or
two.

0.11. The concept of self-dual graphs includes most of the generalisations
which, to my mind, remains close to the spirit of sc-graphs. By “self-dual”
we mean graphs satisfying G ∼= X(G), where

• X is an operator defined unambiguously on some class C of graphs, and

• X is symmetric, that is X(X(G)) = G for all graphs G in C (note that
this implies that X is a bijection on C).

One familiar case is the operation of reversing all arcs in a digraph; self-
converse digraphs bear some similarity to self-complementary digraphs, and
coincide with them in the case of tournaments; we consider them in many
places, but especially 5.2–5.12.

Another example concerns the reversal of all signs on signed and marked
graphs (graphs with a + or − sign on the edges or vertices, respectively);
in fact, self-dual complete signed graphs are essentially the self-complement-
ary graphs. We consider these concepts in 5.60–5.63 and 7.38–7.54 but, as
with isomorphic factorisations, the potential number of self-dualities makes
it impossible to cover the area in any depth.

We originally thought (and hoped!) that topologically self-dual maps
had little, if any, connection with self-complementary graphs, but a few days
before finishing the thesis we came across an interesting paper by White [382],
on which we report briefly in 3.25.

The line graph L(G) and total graph T (G) are defined unambiguously,
but we rarely have L(L(G)) = G or T (T (G)) = G. Like the topological
dual, they do not even preserve the number of vertices. These operations are
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distinctly unlike complementation and, except for a short mention in 1.55 we
do not include them in our survey.

Many authors have even considered graph equations which are even fur-
ther from the spirit of self-complementary graphs, e.g. L(G) = T (G) or
L(G) = T (H) for some graphs G, H. For such matters we refer the reader
to Cvetković and Simić [100] and Prisner [290].

0.12. Regretfully, I have to include several diagrams among the list of things
left out. The software I am using, LATEX, is wonderful for mathematical
notation and cross-references (of which there are quite a few in this thesis)
but notoriously troublesome when it comes to even the simplest of diagrams.
At many points, the reader will have to use the trusted method of pencil and
paper; I hope that the proofs will serve well as instructions on how to sketch
the diagrams.

A word of warning

0.13. When surveying the work of hundreds of mathematicians it would
be a brave person who claims to understand it all, and there is one area
where I must admit to being somewhat shaky, namely the vertex-transitive
self-complementary digraphs of prime order, their automorphism groups and
enumeration (3.21–3.22, 3.30–3.31, and 7.18–7.25). I have tried to report the
results on these topics as accurately as possible, but cannot give a complete
guarantee of correctness.
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Chapter 1

Introduction and Fundamental
Properties

1.1. The study of self-complementary graphs was initiated by Sachs’ im-
pressive 1962 paper [341] and (later, but independently) by Ringel [320].
The subject had an auspicious birth, and its development over the last four
decades was charted by Rao [302]and Bosák [45, Chapter 14]. There have
also been four Ph.D. theses devoted to it at least in part [63, 134, 150, 263],
and four others which cover related topics [201, 293, 337, 383], while the
number of papers now runs into the hundreds. A new survey is needed, and
that is the purpose of this thesis. Our aim is not just to provide pointers
to the considerable amount of research that has been done, but also to give
explicit results. Where possible we give proofs as well to whet the reader’s
appetite.

1.2. The complement G of a graph G has the same vertices as G, and every
pair of vertices are joined by an edge in G if and only if they are not joined in
G. A self-complementary graph G is one that is isomorphic to its complement
G. It is important to realise that, although G and G are isomorphic graphs
with the same set of vertices, they are nonetheless distinct; in fact, they have
no edge in common. Thus G and G will have the same properties, but any
given vertex or set of vertices will generally have different properties in G
and G.

We start with the most basic result on self-complementary graphs, one
included even in introductory courses on graph theory.

1



Lemma. If G is a self-complementary graph on n vertices, then |E(G)| =
n(n−1)

4
, and n ≡ 0 or 1 (mod 4)).

Proof: Since G ∪ G = Kn, and |E(Kn)| =
(

n
2

)

, we must have |E(G)| =
|E(G)| = 1

2

(

n
2

)

= n(n−1)
4

. Moreover, this must be an integer, and since we
cannot have 2 | n and 2 | n− 1, we must either have 4 | n or 4 | n− 1. ¤

1.3. This result can be used as a quick check — for example, Sridharan
defines cad and polycad graphs in [359], and proves that these classes of
graphs have n+2 and 2n+3 edges respectively; his result that these graphs
are not self-complementary then follows easily.

The lemma is also useful in finding small sc-graphs — for n at most 7,
there can only be self-complementary graphs on 1, 4 or 5 vertices, with 0,
3 or 5 edges respectively; in fact there are just four, which are shown in
Figure 1.1. They are known as K1 (also called the trivial sc-graph), P4,
C5, and the A-graph or bull-graph. Other self-complementary graphs were
catalogued in [22, 375] (n = 8), [256, 257] (n = 8 and 9), [232] (n = 12),
[118] (n ≤ 12) and [252] (n = 13).

A-graphC5K1 P4

Figure 1.1: The small sc-graphs

For the sake of clarity, in what follows we will often denote the number
of vertices in a sc-graph by 4k or 4k + 1.

At various points we will also mention or make use of bipartite self-
complementary graphs with respect to Km,n — graphs G ⊂ Km,n such that
G ∼= Km,n −G. We tackle them in more detail in Chapter 5.

2



Distance and connectivity

1.4. We now turn to some simple but powerful results concerning distance
in self-complementary graphs, starting with some definitions.

The distance between two vertices v and w, denoted by d(v, w), is the
length of a shortest path between them, or ∞ if there is no such path. Thus
d(v, v) = 0, while d(v, w) = 1 if and only if v and w are adjacent.

The eccentricity of a vertex v is the maximum of all distances d(v, w).
The diameter [radius] of a graph G is the maximum [minimum] of the eccen-
tricities of all vertices of G, and is denoted by diam(G)[rad(G)]. Thus G is
disconnected if and only if diam(G) = rad(G) = ∞; connected graphs have
finite radius and diameter.

An edge vw of a graph G is a dominating edge of G if all vertices of G
are adjacent to either v or w, or both.

Lemma. A vertex v has eccentricity at least 3 in G if and only if, in G, it
lies on a dominating edge and has eccentricity at most 2.

Proof: If v has eccentricity at least 3 in G, then there is some other vertex
w such that d(v, w) ≥ 3. Thus v and w are not adjacent, and there is no
vertex adjacent to both of them. Then in G, v and w will be adjacent; and
every other vertex will be adjacent to either v or w, or both. Thus vw is a
dominating edge of G, and v has eccentricity at most 2. It is easy to see that
the converse holds too.

1.5. Corollary. For any graph G the following hold:

A. If rad(G) ≥ 3 then rad(G) ≤ 2.

B. Diam(G) ≥ 3 if and only if G has a dominating edge.

C. If diam(G) ≥ 3 then diam(G) ≤ 3.

D. If diam(G) ≥ 4 then diam(G) ≤ 2.

Proof: If rad(G) ≥ 3 then every vertex has eccentricity at least 3, so that
in G every vertex will have eccentricity at most 2.

As for B and C, diam(G) ≥ 3 if and only if there is some vertex v of
eccentricity at least 3 in G, if and only if G contains a dominating edge.

3



Moreover, it is quickly checked that a graph with a dominating edge has
diameter at most 3 (though the converse is not true, e.g. C5). Further, if

diam(G) ≥ 4 then diam(G) 6= 3, as otherwise diam(G) = diam(G) ≤ 3. ¤

1.6. Theorem. Let G be a non-trivial self-complementary graph; then

A. G has radius 2 and diameter 2 or 3.

B. G has diameter 3 if and only if it contains a dominating edge.

C. The number of vertices of eccentricity 3 is never greater than the num-
ber of vertices of eccentricity 2.

Proof: We claim that G has no vertices of eccentricity 1, that is vertices of
degree n − 1. For if it did, the complement would contain isolated vertices,
and then every vertex would have eccentricity ∞ in G. Since G ∼= G, this
is impossible. Thus the radius and the diameter must both be at least 2; A
and B then follow from 1.5.

Therefore G has only vertices of eccentricity 2 or 3. If there are t vertices
of eccentricity 3, these will become t vertices of eccentricity 2 in G, so that
C is proved. ¤

1.7. We note that 1.6.A was first stated by Ringel [320], but the proof given
here is due to Harary and Robinson [190]. The results related to dominating
edges, such as 1.6.B, are essentially due to Akiyama and Ando [6], while 1.6.C
is a special case of a theorem of Tserepanov [372] on complementary graphs.
A direct proof of 1.5.D was given in [365].

These simple but powerful results suggest that it might be difficult to
find sc-graphs, maybe even that there is only a finite number of them. We
will soon see that this is far from the truth.

1.8. The well-known result that G and G cannot both be disconnected is a
corollary of 1.5; all self-complementary graphs are thus connected. We now
look at how well connected they are, a question thoroughly researched by
Akiyama and Harary [12], to whom the next few results are due.

A vertex v in a connected graph G is called a cut-vertex if G − v is
disconnected. A connected graph is said to be k-connected if the removal of
less than k vertices leaves a subgraph that is still connected. Thus, if G has
cut-vertices it is only 1-connected; if it does not have cut-vertices, it is (at
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least) 2-connected and is called a block. A vertex of degree one is called an
end-vertex, and the number of end-vertices in G will be denoted by v1(G).

Lemma. A self-complementary graph G has cut-vertices if and only if it has
end-vertices.

Proof: Since K2 is not self-complementary, any sc-graph with end-vertices
must have cut-vertices.

Now, if G is a sc-graph with cut-vertex v, but no end-vertices, then G−v
has at least two components. Let one of these components be A and let
G − v = A ∪ B. Then G− v contains a spanning bipartite subgraph, with
parts A and B. Since G has no end-vertices, A and B each have cardinality
at least two; and v has degree at least 2 in G, and thus also in G. But then
G is 2-connected, a contradiction. ¤

1.9. We therefore turn our attention to the presence of end-vertices in sc-
graphs.

Lemma. If a graph G has at least two end-vertices, then G has at most two
end-vertices.

Proof: Let v and w be two end-vertices of G, adjacent to x and y (possibly
x = y). Then the only candidates for end-vertices in G are x and y, as all
other vertices have degree at most n− 3 in G. ¤

1.10. If H is a graph, we denote by H + K2 ◦ K1 (Figure 1.2). the graph
formed from H by adding four new vertices v1, v2, v3 and v4, the edges of the
path v1v2v3v4, and the edges joining v2 and v3 with all the vertices of H. So
the A-graph is K1 +K2 ◦K1.

Theorem. A graph G of order n ≥ 4 has v1(G) = v1(G) = 2 iff G is of the
form H +K2 ◦K1, where H is a graph of order n− 4.

Proof: It is easily seen that H + K2 ◦ K1 has the required property.
Conversely, let v1(G) = v1(G) = 2. Let v1 and v4 be the end vertices of G,
adjacent to v2 and v3 respectively. As noted in the proof of Lemma 1.9, v2 and
v3 are the only possible end-vertices in G, so they must be distinct vertices,
of degree n− 2 in G. Then if we let H be the graph G− {v1, v2, v3, v4}, we
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v4

v3

H

v2

v1 v4

v3

H

v2

v1

Figure 1.2: H +K2 ◦K1 and H +K2 ∪ P4

see that G = H +K2 ◦K1. ¤

1.11. Theorem. For a sc-graph G of order n the following statements are
equivalent:

A. G has cut-vertices.

B. G has end-vertices.

C. G = H+K2 ◦K1, where H is a sc-graph of order n− 4. In this case, G
has exactly two cut-vertices, exactly two end-vertices, and diameter 3.

Proof: A ⇔ B was proved in Lemma 1.8, and evidently C ⇒ A, B. It is
easy to check that in C, the graph G is self-complementary iff H is.

We now show that B⇒ C. By Lemma 1.9 a sc-graph G cannot have more
than two end-vertices. We claim that it cannot have exactly one end-vertex.
For, if G has just one end-vertex x, it must also contain one vertex y of degree
n−2. In G, x will be the unique vertex of degree n−2, and y the unique end-
vertex. But x and y are adjacent in exactly one of G and G, a contradiction.
So, if G has end-vertices, it must have exactly two end-vertices, and C follows
from Theorem 1.10. ¤

1.12. Let Gn, G
′′
n and G

b

n be the number of non-isomorphic self-complement-
ary graphs, self-complementary graphs with end-vertices, and self-comple-
mentary blocks on n vertices respectively. From 1.11, and from the fact that
the mapping H → H +K2 ◦K1 is one-to-one, we have the following result:
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Corollary. For any positive integer n ≥ 4 we have

Gn = G
′′
n +G

b

n

G
′′
n = Gn−4

G
b

n = Gn −Gn−4.¤

1.13. The results just proved are significant in their own right, but they
have a further important application. Starting from G1 = P4, and repeatedly
performing the operation Gi+1 = Gi + K2 ◦ K1 we get an infinite family of
self-complementary graphs of diameter 3 with n ≡ 0 (mod 4)). If we start
with G1 = K1, we get a similar family for n ≡ 1 (mod 4)).

We thus know that sc-graphs (of diameter 3 and with end-vertices) exist
for all feasible n. A simple modification will settle the existence question
for sc-graphs of diameter 2. Let H +K2 ∪ P4 (Figure 1.2) denote the graph
formed from H by adding four new vertices v1, v2, v3 and v4, the edges of the
path v1v2v3v4, and the edges joining v1 and v4 with all the vertices of H.
Then, starting with G0 = P4

1 or G1 = C5, we can form two new families of
sc-graphs of diameter 2 for n ≡ 0 and 1 (mod 4)). Incidentally, it can be
checked that these families are Hamiltonian. In fact, every sc-graph has a
Hamiltonian path (see 2.13), so H +K2 ∪ P4 is Hamiltonian for any choice
of H.

1.14. Self-complementary graphs of diameter 3 without end-vertices can
also be constructed easily (see Figure 1.3). We take a P4, and an arbitrary
graph H on k vertices. We then replace the end-vertices of the P4 by copies
of H, and the interior vertices by copies of H. Where two vertices of P4 were
joined by an edge, the corresponding graphs are now joined by all possible
edges between them. It is easy to see that the result is a self-complementary
graph on 4k vertices with diameter 3, and for k ≥ 2 there are no end-vertices.
Moreover, if we add a vertex v, and join it to all the vertices of the copies of
H, we get a sc-graph of order 4k+1 and diameter 3 but without end-vertices.
We state these results formally in the next theorem, of which A and B were
first proved by Ringel [320].

1.15. Theorem.
1P4 is not included in the sequence for n ≡ 0 (mod 4) because its diameter is 3.
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H

H

H HH

HH H

Figure 1.3: Sc-graphs of diameter 3 without end-vertices

A. A (Hamiltonian) sc-graph of diameter 2 on n vertices exists iff n ≡ 0 or
1 (mod 4), n ≥ 5. Every sc-graph on n vertices is an induced subgraph
of a Hamiltonian sc-graph of diameter 2 on n+ 4 vertices.

B. A sc-graph of diameter 3 with end-vertices exists iff n ≡ 0 or 1 (mod 4),
n ≥ 4. Every sc-graph on n vertices is an induced subgraph of a sc-
graph of diameter 3 and order n+ 4 with end-vertices.

C. A sc-graph of diameter 3 without end-vertices exists iff n ≡ 0 or 1
(mod 4)), n ≥ 8. ¤

1.16. We have thus seen how to produce systematically larger sc-graphs by
adding a P4; in 1.28 we will see how to construct sc-graphs of diameter 3
without end-vertices in this manner, thus filling an evident gap in part C of
the previous theorem. In the case of sc-graphs with end-vertices the process
is reversible. So when G is a graph with end-vertices, testing for self-comple-
mentarity quickly reduces to testing a subgraph H on n− 4 vertices.

In view of the link between sc-graphs and the isomorphism problem ex-
plained in 4.2–4.10), it would be interesting to know whether there is a sys-
tematic way of producing smaller sc-graphs from larger ones, and whether
this will let us test recursively for self-complementarity by considering smaller
and smaller subgraphs.

In fact P4’s are plentiful in a self-complementary graph. Alavi, Liu and
Wang [16, Lemma 1] have shown that every connected graph with connected
complement must contain an induced P4. When the graph is isomorphic to
its complement we can say much more:
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The Decomposition Theorem[Gibbs 1974]. A self-complementary graph
on 4k or 4k + 1 vertices contains k disjoint induced P4’s. ¤

Unfortunately, to find the P4’s without a brute force search we not only
need to know that the graph is self-complementary, but also to have an ex-
plicit isomorphism fromG onto its complement (an antimorphism— see 1.22).
Moreover, removing one of the P4’s will not necessarily give us a self-comple-
mentary subgraph on n − 4 vertices. The theorem is thus of little, if any,
help in finding an efficient test for self-complementarity.

Similar issues are tackled in 1.36–1.39, where we see how to produce sc-
graphs of order 4k+1 from those of order 4k, and consider some cases where
the process is reversible.

1.17. Let κ(G), λ(G) and δ(G) denote the vertex-connectivity, edge-connec-
tivity and minimum degree of G, respectively. It is known that for graphs in
general κ(G) ≤ λ(G) ≤ δ(G). If, in the construction of 1.14, we take H to be
the complete graph on k vertices, we obtain a sc-graph with δ(G) = 2k−1 and
κ(G) ≤ k, so the first inequality can be strict even for sc-graphs. However,
Rao [302] conjectured, and N. Vijayaditya proved the following:

Theorem. If G is a sc-graph, then λ(G) = δ(G). ¤

1.18. Rao [302] also made the following conjecture. He noted that, using
Menger’s theorem, it could be shown that the Paley graphs (see 3.18) verify
the conjecture when 4k + 1 is a prime power.

Conjecture. For every natural number k there is a vertex-transitive self-
complementary graph G on 4k + 1 vertices with κ(G) = 2k.

1.19. A dominating set S is a set of vertices such that every vertex not in
S is adjacent to some vertex in S. The domination number γ(G) is the size
of a smallest dominating set of G. No self-complementary graph can have
γ(G) = 1. If the diameter of G is 3, then γ(G) = 2, by 1.6.B.

There are also arbitrarily large sc-graphs with diameter 2 and γ(G) =
2. The circuit C5 is one example; the C5-join of (Kk, Kk, K1, Kk, Kk) or
(Kk, Kk, K1, Kk, Kk), defined in 1.26, are two other examples on 4k+ 1 ver-
tices. In all these cases there are edges of the graph which are not contained
in any triangles; this is no co-incidence.
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Theorem[Brigham and Dutton 1987]. The following are equivalent for any
graph G of order n ≥ 3:

A. every two vertices have a common neighbour

B. diam(G) ≤ 2 and every edge of G is in a triangle

C. γ(G) ≥ 3. ¤

1.20. The vertices of a graph with minimum [maximum] eccentricity are
called central [diametral] vertices. If the radius and diameter of a graph are
equal then every vertex is both central and diametral, and the graph is said
to be self-centred.

The antipodal [centre] graph of G, A(G), has the same vertex-set as G,
and two vertices are adjacent in A(G) if and only if their distance in G is
equal to the diameter [radius] of G.

Let G be a self-complementary graph. If its diameter is 2 then we have
A(G) = C(G) = G ∼= G and we say thatG is self-antipodal and self-central. If
its diameter is 3, G cannot be self-antipodal or self-central because A(G) ⊂ G
and C(G) ⊂ G. So a self-complementary graph is self-antipodal if and only
if it is self-central if and only if it is self-centred.

A graph is said to be antipodal if it is the antipodal graph A(H) of some
graph H. But it is known [27] that a graph is antipodal if and only if it is
the antipodal graph of its complement (this is also true for digraphs [213]).
So a self-complementary graph is antipodal if and only if it is self-antipodal.

Interestingly, Hendry [206] showed that for sc-graphs of diameter 3, A(G)
is bipartite; while Acharya and Acharya [3] showed that a bipartite graph
is self-antipodal if and only if it is a bipartite self-complementary graph of
diameter 3 (see 5.13 for definitions).

Finally, we note the following — Nair [263, Thm. 2.18] showed that (up to
addition or deletion of isolated vertices) every graph is the antipodal graph of
some (Hamiltonian) graph of diameter 2. Rao [299] showed that every graph
G is the centre graph of a (i) Hamiltonian, (ii) Eulerian, (iii) k-connected,
(iv) k-chromatic (where k = χ(G)), and (v) total graph.
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Degree sequences and antimorphisms

1.21. We now look briefly at the degree sequences of sc-graphs, and the
isomorphisms between a sc-graph and its complement. Many of the results
in this section and the next are straightforward, and are not stated explicitly
by any author. However, they are all useful, either as a quick check or an
aid to intuition, or in proving other results.

The degree of a vertex is the number of vertices to which it is adjacent.
The degree sequence of a graph is the sequence of degrees of all its vertices
arranged in non-increasing order d1 ≥ d2 ≥ . . . ≥ dn. We start with the
following straightforward result.

Lemma. The degree sequence of a sc-graph G on n vertices is symmetric
about (n− 1)/2, that is di + dn+1−i = n− 1. In particular,

A. if n = 4k, exactly half the vertices of G will have even degree, and
exactly half will have odd degree;

B. if n = 4k+1, G will have at least one vertex of degree (n− 1)/2 = 2k.

Proof: A vertex v has degree d in G if and only if it has degree n− 1− d
in G. Thus G contains exactly r vertices of degree d iff G contains exactly r
vertices of degree n− 1− d, so the result follows. ¤

1.22. An isomorphism σ from a graph to its complement is called an anti-
morphism. Such a permutation maps V (G) onto itself such that

A. ∀v, w ∈ V (G), v ∼ w in G⇔ σ(v) ∼ σ(w) in G⇔ σ(v) 6∼ σ(w) in G.

We note that σ is thus also an isomorphism from G to G.
If a set of vertices S is kept fixed by σ, that is σ(S) = S, then condition

A will hold even when restricted to S. This means that S induces a self-
complementary subgraph of G, with antimorphism σ|S. In particular, we
have

B. σ(S) = S ⇒ |S| = 4s or 4s+ 1 for some s.

In general, however, subgraphs or induced subgraphs of a sc-graph G are not
themselves self-complementary (the most obvious example is the edge, K2).
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This means that there cannot be a forbidden subgraph or forbidden induced
subgraph characterization of sc-graphs.

We will always express permutations as the product of disjoint cycles.
It is easy to see that in each cycle of an antimorphism, the degrees of the
vertices alternate between s and n − 1 − s for some integer s. We can also
find the parity of the number of vertices of each degree.

1.23. Lemma. In a sc-graph G, the number of vertices of a given degree
d 6= (n− 1)/2 is even.

Proof: Let G have exactly r vertices of degree d 6= (n− 1)/2. Then G also
has exactly r vertices of degree n− 1− d, and any antimorphism must map
these vertices onto each other. So the 2r vertices induce a self-complementary
graph, and thus 2r ≡ 0 (mod 4)⇒ r ≡ 0 (mod 2). ¤

1.24. Lemma. In a sc-graph G on 4k + 1 vertices, the number of vertices
of degree 2k is 4s+ 1 for some s.

Proof: If G has r vertices of degree 2k, they must map onto themselves
under every antimorphism, so by 1.22.B we must have r = 4s or 4s + 1 for
some s. But if r = 4s then, by 1.23 there are an even number of vertices of
each degree, which is impossible. ¤

1.25. We now present Sachs’ [341] and Ringel’s [320] classical result on the
structure of antimorphisms.

Theorem. Every cycle of an antimorphism σ has length divisible by 4,
except for a single fixed vertex whenever n = 4k + 1.

Proof: If (v1, v2, . . . , vr) is a cycle of σ, then by 1.22.B we must have r = 4s
or 4s+ 1.

Now, let (v1, v2, . . . , vr) be a cycle of σ, with t = 4s + 1 for some s ≥ 1.
Then v1 ∼ v2 ⇔ v2 6∼ v3 ⇔ · · · ⇔ v4s+1 ∼ v1 ⇔ v1 6∼ v2, which is a
contradiction, so any odd cycles must be fixed vertices.

Moreover, an antimorphism cannot fix two vertices x and y, for then we
would have x ∼ y ⇔ σ(x) 6∼ σ(y)⇔ y 6∼ x. So all cycles must have length a
multiple of 4, except possibly for a single fixed vertex. Obviously, the total
number of vertices is odd or even depending on the occurrence of this single
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odd cycle, so the result follows. ¤

We note here that a given graph G will have many antimorphisms, pos-
sibly with different cycle lengths; if n = 4k + 1, these permutations may
have different fixed vertices. Conversely, in the next chapter we will see that
every permutation with appropriate cycle lengths is the antimorphism of
some sc-graph, and we will present an algorithm for constructing all possible
sc-graphs for each such permutation. In the meantime we look at sporadic
constructions of sc-graphs which make use of antimorphisms.

New graphs from old

1.26. Given a graph G the generalized G-join of a family F = (Fu|u ∈ V (G))
of graphs is the graph H with vertex set V (H) = {(u, v)|u ∈ V (G), v ∈
V (Fu)} and where

(u1, v1) ∼ (u2, v2) if

{

u1 ∼ u2 in G, or
u1 = u2 and v1 ∼ v2 in Fu1 .

Basically, each vertex u of G is replaced by Fu, and each edge (u1, u2) of G
is replaced by the bundle of all possible edges between Fu1 and Fu2 .

For some results on degrees, triangle numbers and diameters of G-joins
and Cartesian products, see Nair [263, Sections 3.2, 3.3]. In particular, if G
has diameter [radius] at least 2 then the diameter [radius] of any G-join will
be the same as the diameter of G.

It is easy to see [Ruiz 1980] that if G is a self-complementary graph with
antimorphism σ, and F a family of graphs such that Fu ∼= F σ(u), then the
generalized G-join of F will also be self-complementary. In other words, for
each cycle (u1, u2, u3, . . . , u4r) of σ, we choose a graph L and replace the odd
vertices by L and the even vertices by L. We can choose a different L for
each cycle, and we can choose L to be K1 (to keep the vertices of the cycle
unchanged) or K0 (to remove the vertices of the cycle altogether). In the
case of a fixed vertex (u), we replace u with a self-complementary graph.

This G-join will have an antimorphism closely mirroring the structure
of σ. We replace each cycle (u1, u2, u3, . . . , u4r) by a set of cycles mapping
vertices of Fui onto corresponding vertices of Fui+1

. Any one-cycle (u) is
replaced by an antimorphism of Fu.
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The G-join may have other antimorphisms. In particular, if all the ver-
tices of a given cycle are replaced by copies of a self-complementary graph K,
then we can replace the cycle (u1, u2, u3, . . . , u4r) by an isomorphism map-
ping Fu1 onto F u2 , another (possibly different) mapping Fu2 onto F u3 and so
on.

For all we know, there might even be different but isomorphic G-joins.
That is, the G-join of a family F might be isomorphic to the G′-join of F ′

for some other graph G′ and some other family F ′.

Notice that, given an odd order sc-graph G, with some fixed vertex v, we
can produce larger sc-graphs of any feasible odd or even order by replacing v
with a sc-graph of appropriate order. But if G has even order, the construc-
tion only allows us to produce even order sc-graphs. A quirk which we can
only describe as, well, odd.

1.27. Since P4 is the simplest non-trivial self-complementary graph, the P4-
join of (G,H,H,G) is frequently used (see 1.65, 4.8 and 4.42). In 1.14 we
used it to construct sc-graphs of diameter 3 without end-vertices. However,
the construction of sc-graphs of diameter 2, and sc-graphs of diameter 3 with
end-vertices was quite different — we took an arbitrary self-complementary
graph on n vertices and added a P4 to it in a specified manner. In this spirit
we now give an alternative construction of sc-graphs of diameter 3 without
end-vertices.

1.28. Let G be a sc-graph with 4k vertices, k > 0, and some antimorphism
σ = (u1, u2, u3, u4, . . . , u4r)(u4r+1, u4r+2, . . . , u4r+4s) · · · . Define A, B, C, D
to be the sets of vertices with subscripts congruent to 1, 2, 3, or 4 (mod 4),
respectively, so that σ(A) = B, σ(B) = C, σ(C) = D and σ(D) = A.

Now add a path xvwy, and join x, v, w and y to A ∪D, A ∪ B, D ∪ C
and B ∪C respectively. The resulting graph G′ (Figure 1.4) is a self-comple-
mentary graph of order 4k + 4 with no end-vertices. Since x and y are not
adjacent and do not have a common neighbour, G′ cannot have diameter
2. (Alternatively, note that vw is a dominating edge, so that G′ must have
diameter 3).

Starting from G0 = P4, and repeatedly applying this procedure we obtain
an infinite class of sc-graphs of diameter 3 without end-vertices for all feasible
even n ≥ 8.

We note that G′ will depend on the numbering of the vertices in each
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yv

xw

D CBA

Figure 1.4: A sc-graph of order 4k + 4 and diameter 3 without end-vertices

cycle: for example, we could just as well number the first cycle

(u4r, u1, u2, u3, u4, . . . , u4r−1),

and this would change A, B, C and D.
If we start with a self-complementary graph on 4k + 1 vertices, the an-

timorphism will have a single fixed vertex (z). We number all the other
vertices so that z is adjacent precisely to the even numbered vertices (that
is, to the vertices in B ∪D). We then add the path xvwy as above, joining
z to v and w (Figure 1.5).

yv

xw

z

D CBA

Figure 1.5: A sc-graph of order 4k + 5 and diameter 3 without end-vertices

We state this formally (and for the first time) below.

Lemma. Every sc-graph on n vertices is an induced subgraph of a sc-graph
of diameter 3 and order n+ 4 without end-vertices.
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Auto- and anti-morphisms

1.29. Let us denote the set of all automorphisms [antimorphisms] of a
sc-graph G by A(G) [A(G)], or just A [A] where there is no ambiguity.
We present here three fundamental results about antimorphisms, automor-
phisms, and the links between them. Part B and the first part of D of the
following result were stated by Sachs [341], parts E, G and H by Gibbs [151],
part C and the second part of D by Salvi-Zagaglia [343] and part H by
Rao [310].

1.30. Theorem. Let G be a self-complementary graph.

A. Let τ be a product of a finite number of automorphisms and antimor-
phisms of G. Then, depending on whether the number of antimor-
phisms is odd or even, τ will be an antimorphism or automorphism of
G.

B. In particular, if σ ∈ A then σ2m ∈ A and σ2m+1 ∈ A for any integer m.

C. The order of σ must be a multiple of 4, and thus G has at least two
different antimorphisms.

D. The automorphism group of a sc-graph is non-trivial. In particular,
G has a non-trivial automorphism with 0 or 1 fixed points (depending
on whether n = 4k or 4k + 1) and all other cycles of even length; and
A(G) contains an involution.

E. G has an antimorphism whose cycle lengths are all powers of 2.

F. Let α ∈ A be fixed. Then αA = A and αA = A.

G. Let σ ∈ A be fixed. Then σA = A and σA = A, and both mappings
are bijections. Thus, G has as many automorphisms as antimorphisms.

H. A ∪ A forms a group under composition of functions, in which A is a
normal subgroup of index 2. ¤
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Proof: Let A′(G) = (a′ij) be the non-standard adjacency matrix of G,
defined by

a′ij =







0, if i = j,
1, if i is not adjacent to j,
−1, if i is adjacent to j.

(This matrix was used by Gibbs [150, 151] in his study of sc-graphs, and was
first introduced by Seidel). With each automorphism α we can associate a
permutation matrix Pα so that P T

α A
′(G)Pα = A′(G). With each antimor-

phism σ we can associate a permutation matrix Pσ so that P T
σ A

′(G)Pσ =
A′(G) = −A′(G). Then Pτ is the product of all the associated permuta-
tion matrices, and we have P T

τ A
′(G)Pτ = −A′(G) if the total number of

antimorphisms is odd, and P T
τ A

′(G)Pτ = A′(G) if the number is even.
We remark that B holds even for negative integers (because for any an-

timorphism σ, σ−1 is also an antimorphism). The first part of C follows
directly from the cycle lengths of σ, and implies the second part of C and
the first part of D. For σ2 6= I is an automorphism, while σ3 6= σ is another
antimorphism.

For the second part of D, let r be the least integer such that σr = I. We
can write r = 2s(2t+ 1) for some s, t. Then by C we must have s ≥ 2. So if
we define σ′ := σ2

s−1(2t+1) then σ′ 6= I, σ′2 = I, and σ′ is an automorphism
since s− 1 ≥ 1. So G has an automorphism whose cycles are all of length 1
or 2.

To prove E we define σ′′ = σ2t+1. Then σ′′ is an antimorphism of order
2s, and thus all the cycles of σ′′ must have length a power of 2. Of course,
none of the cycles will have length exactly 2, and there will be exactly one
cycle of length 1 if and only if n = 4k + 1.

The fact that αA ⊆ A, αA ⊆ A, σA ⊆ A and σA ⊆ A, follows from
part A. To prove that, say, σA = A we note that for any automorphism α0,
σ−1α0 ∈ A and σσ−1α0 = α0, so that the mapping φ → σφ, φ ∈ A is onto.
Moreover, since σ always has an inverse, we have

σφ1 = σφ2 ⇔ σ−1σφ1 = σ−1σφ2 ⇔ φ1 = φ2

for all φ1, φ2 ∈ A, and thus the mapping is bijective.
The remaining parts of F and G are similarly proved, and then H follows

as a consequence. ¤

1.31. We note that, unless all of G’s antimorphisms have order 2s (and
maybe even then) it must have not only two different antimorphisms, but
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even two with different cycle structure. There are sc-graphs whose antimor-
phisms all have the same cycle structure — Hartsfield [198] gave an example
of a sc-graph of order 13 whose antimorphisms all have cycles of lengths 1,
4, 8. Her main intention, though, was to display a graph (and a regular one
at that) whose non-trivial cycles have unequal lengths; in 3.45 we extend her
example to an infinite family of such graphs.

1.32. Rao proved the following in [310]:

Theorem. Let Γ be a group. Then

A. Γ is isomorphic to the automorphism group of some self-complementary
digraph D.

B. Γ is isomorphic to the automorphism group of some sc-tournament T
if and only if |Γ| is odd.

C. If Γ is the automorphism group of a sc-graph, then it must have even
order.

Proof: We will not prove part A. Part C is easy since every antimor-
phism σ has order a multiple of 4, and precisely the even powers of σ are
automorphisms.

The proof we give of part B is due to Cameron [59]. It is known that a
group Γ is isomorphic to the automorphism group of some tournament T if
and only if Γ has odd order. To see that Γ must also be the automorphism
group of a sc-tournament, take a copy of T and a copy of its converse T ′.
Then add an arc joining each vertex in T to the corresponding vertex of T ′

and, for every other pair of vertices, an arc from T ′ to T . ¤

Rao conjectured that the converse of C is true, but was unable to prove
or disprove it. Cameron gave the following characterisation:

Theorem. A group Γ is the automorphism group of some self-complement-
ary graph if and only if there is a group Ω such that:

A. Ω contains a normal subgroup Γ′ ∼= Γ,

B. [Ω : Γ′] = 2, and
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C. there is no element α ∈ Ω− Γ′ such that α2 = id. ¤

The necessity is obvious — if Γ = A(G) for some sc-graph G, just take
Ω to be A(G) ∪ A(G). As for sufficiency, Cameron said that “the converse
is proved by a simple construction” but did not give any details. He did,
however, add “Such a goup necessarily has even order, and it cannot be a
complete group. Thus, for example, symmetric groups are excluded.” So
Rao’s conjecture is not true, but we are still left with the problem of giving
a more useful characterisation (and proof!) of the automorphism groups of
sc-graphs.

1.33. Kotzig [227] defined the following sets and posed the problem of
characterising them.

F (G) := {u ∈ V (G)| there exists σ ∈ A(G) such that σ(u) = u},
N(G) := {uv ∈ E(G)| there exists σ ∈ A(G) such that σ(u) = v}.

Rao [306] not only solved this problem, but also showed how V (G) is
partitioned into equivalence classes (which we call orbits) under A(G). (For
details on other problems due to Kotzig see 3.37).

We use u
f→ v to mean that u and v are in the same orbit, and f is an

automorphism such that f(u) = v.

1.34. Theorem. Let G be a self-complementary graph. Then the orbits of
G can be numbered V1, V2, . . . , V2s if n = 4k, or V0, V1, V2, . . . , V2s if n = 4k+1
such that2:

A. |V0| = 4t+ 1 for some t, and |Vi| is even for all i ≥ 1.

B. σ(V0) = V0 and σ(Vi) = V2s+1−i for any antimorphism σ;

C. G[V0] is a regular sc-subgraph (of degree (|V0|−1)/2, and G[Vi, V2s+1−i]
is a regular bipartite self-complementary subgraph (of degree |Vi|/2)
for all i ≥ 1.

D. F (G) = V0.

E. N(G) = E[V0] ∪
⋃s
i=1E[Vi, V2s+1−i].
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V2s
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Vs+1V2s−1

Figure 1.6: The orbits of a sc-graph; the bold lines denote the edges of N(G).

Proof: A. Let σ be an arbitrary antimorphism of G, which we can sketch
as (u0)(u1 . . . u4r) · · · (u4s+1 . . . u4k). In any given cycle, all the odd-numbered
vertices are in a single orbit of G, while the even-numbered vertices are also
in a single orbit (possibly the same as that of the odd-numbered vertices).
Thus any orbit Vi will contain an even number of vertices from each cycle,
except for a single orbit, which we denote V0, which also contains the vertex
u0. Thus all orbits have even size except for V0, which has odd size. (We
prove later on that |V0| ≡ 1 (mod 4)).

D. The fixed vertex of any antimorphism is contained in the unique orbit
of odd size, that is F (G) ⊆ V0. Now, if n = 4k+1, there must be at least one
vertex u ∈ F (G) ⊆ V0, say σ(u) = u. Let v be any other vertex in V0, and

let u
f→ v. Then fσf−1 is an antimorphism which fixes v. Thus F (G) = V0;

we denote it sometimes by F for simplicity.

B. If u
f→ v, then σ(u)

f ′→ σ(v), where f ′ = σfσ−1. Conversely, if σ(x)
g→

σ(y), then x
g′→ y, where g′ = σ−1gσ. Thus every antimorphism induces a

bijection on the orbits of G. We now show that each antimorphism must

induce the same bijection. For if σ1, σ2 are antimorphisms, then σ1(u)
h→

σ2(u) where h = σ2σ
−1
1 ; that is, both antimorphisms must map u to the

same orbit.
Now V0 is the unique odd-sized orbit, so we must have σ(V0) = V0. This

proves the first part of B, and also shows us that V0 must induce a sc-
subgraph, and we thus have |V0| = 4t + 1 for some t, which completes the
proof of A. Further, V0 forms a single orbit under A(V0), so that G[V0] must
be vertex-transitive, and thus regular; this proves the first part of C.

2The results and proofs are stated for n = 4k + 1. The case n = 4k is analogous and
simpler, as any references to V0 or fixed vertices should just be ignored. See Figure 1.6 for
an illustration.
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Since σ2 is an automorphism, we must have σ2(Vi) = Vi for every orbit,
that is σ(Vi) = Vj ⇔ σ(Vj) = Vi. We now show that we cannot have an even-
sized orbit Vi with σ(Vi) = Vi. For then Vi would induce a sc-subgraph on 4r
vertices, for some r, and the induced bipartite subgraph G[V0, Vi] would have
(4t + 1)2r edges. Since every vertex of Vi has the same degree in G[V0, Vi],
this is impossible. So the even-sized orbits must be paired up as stated in B
(incidentally, this also shows that the number of even-sized orbits is in fact
2s, for some s).

Since |Vi| = |V2s+1−i|, we can see that G[Vi, V2s+1−i] must satisfy the
conditions stated in C.

We turn finally to E. By virtue of B, we have that N(G) is a subset of
the right hand side, and we only have to prove equality. Let uv ∈ E[V0], let

σ be an antimorphism which fixes u, and u
f→ v for some f . Then fσ is an

antimorphism with fσ(u) = v, and thus uv ∈ N(G). Now let uv be an edge
with u ∈ Vi, v ∈ V2s+1−i for some i ≥ 1; choose an arbitrary antimorphism

σ, let σ(u) = w and u
g→ v for some g. Then gσ is an antimorphism with

gσ(u) = v, so uv ∈ N(G). ¤

1.35. Corollary. The following are equivalent for a sc-graph G:

• G is vertex-transitive

• F (G) = V (G)

• N(G) = E(G). ¤

The structure of sc-graphs

1.36. The characterisation of F (G) is very important as it gives us a natural
association between sc-graphs on 4k+1 vertices and sc-graphs on 4k vertices,
though unfortunately not vice versa. In fact, the result that F (G) is the
unique odd orbit of G was essentially first proved by Robinson [321] (and
also by Molina [255], much later but apparently independently of the other
two authors). Robinson further proved [324] that for all sc-digraphs F (G)
is the unique orbit fixed by any and every antimorphism, and this allows
us to extend Rao’s theorem to self-complementary digraphs (see 5.7 for the
details).
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Lemma. If G is a sc-graph on 4k + 1 vertices, and v ∈ F (G), then G− v is
self-complementary. If w is any other vertex in F (G), then G− v ∼= G−w.

Proof: Since v ∈ F (G), there is at least one antimorphism which fixes v,
and which thus fixes G− v. Then G− v must be self-complementary. Since
F (G) forms an orbit of G, there is an automorphism α such that α(v) = w
and thus α(G− v) = G− w. ¤

We will call G− v a maximal fixed subgraph of G, or the maximal fixed
subgraph if we are only interested in its isomorphism type. The lemma tells
us that every odd order sc-graph has a unique maximal fixed subgraph, up to
isomorphism. However, we cannot obtain G from its maximal fixed subgraph
since we do not know which vertices were neighbours of the removed vertex.

1.37. Definition. Let G be a self-complementary graph of order 4k, with
some antimorphism σ. Let A, B be disjoint sets of 2k vertices each, such
that σ(A) = B and σ(B) = A. We say that A and B are exchanged by σ,
and that A and B are exchangeable sets. The subgraphs induced by A and
B are called exchangeable subgraphs. The graph G(A,B) is constructed by
adding a vertex v0 to G, and joining it to all the vertices of A.

1.38. Lemma. G is a maximal fixed subgraph of H if and only if H =
G(A,B), for some exchangeable sets A, B.

Proof: If A and B are exchanged by σ, then (v0)σ will be a antimorphism
of G(A,B), with G as a maximal fixed subgraph.

Conversely, let G be a maximal fixed subgraph of some graph H, and
let φ = (w)σ be the antimorphism fixing G. Let A and B be the sets of
neighbours and non-neighbours of w. Then obviously σ is an antimorphism
of G which exchanges A and B. ¤

1.39. If we take Lo [Hi] to be the set of vertices of G of degree less than
2k [at least 2k], then G(Lo,Hi) and G(Hi, Lo) are non-isomorphic sc-graphs
both of which have G as maximal fixed subgraph. So an even order sc-graph
is never the maximal fixed subgraph of a unique graph.

We note that the graphs G(Hi, Lo) have exactly one vertex of degree
2k, and thus |F (G(Hi, Lo))| = 1. However, even regular graphs can have
|F (G)| = 1 [338] — for any k, the C5 join of (Kk, Kk, K1, Kk, Kk) is regular
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but the central K1 is unique as it is the only vertex which is in just two
cliques.

Problems.

A. When can a self-complementary graph G contain a self-complementary
subgraph H which is not fixed by any antimorphism of G?

B. Can this occur when |V (G)| = 4k + 1 and |H| = 4k?

C. If so, will H be isomorphic to the maximal fixed subgraph of G?

We refer to 1.16 for a related discussion, and note that the Decomposition
Theorem stated there will probably help in answering A.

A pair of vertices v, w are said to be pseudo-similar if there is no auto-
morphism mapping v to w, but G− v ∼= G− w. So the last problem can be
rephrased as follows:

C. When can a sc-graph G contain a pair of pseudo-similar vertices v, w
with v ∈ F (G), w 6∈ F (G)?

We now look at two notable cases where there is a bijection between
classes of odd order and even order sc-graphs.

1.40. Theorem[Robinson 1969]. The sc-graphs on 4k vertices are not
Eulerian, but they are in one-one correspondence with the Eulerian sc-graphs
on 4k + 1 vertices.

Proof: We note that, since sc-graphs are connected, the Eulerian sc-graphs
are precisely those where every vertex has even degree. Now if G is a sc-
graph of order 4k, exactly half its vertices will have odd degree and exactly
half will have even degree, so that G is not Eulerian.

However, if we denote the sets of vertices of odd and even degrees by A
and B, respectively, then A and B are exchangeable and G(A,B) is Eulerian.
These are obviously the only sets which will give us an Eulerian graph, so
each even order sc-graph G is the maximal fixed subgraph of exactly one
Eulerian sc-graph. Since every (Eulerian) sc-graph on 4k + 1 vertices has a
unique maximal fixed subgraph, the correspondence is established. ¤

1.41. Obviously, whenever we have a unique way of identifying a pair of ex-
changeable sets, we can set up a similar bijection. For example, self-comple-
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mentary graphs with loops allowed can exist only on 4k vertices, and must
have exactly 2k loops; the sets of vertices with and without loops are ex-
changeable, and so there is a bijection between sc-graphs on 4k vertices with
loops and sc-graphs on 4k + 1 vertices.

An almost regular graph is a graph whose vertices have one of two degrees,
s and s−1, for some s; we insist that at least one vertex have degree s, and at
least one vertex degree s−1, otherwise we get a regular graph. The following
is partly due to Sachs [341].

Lemma. A regular self-complementary graph G must have 4k + 1 vertices
and degree 2k for some k, and diameter 2. An almost regular sc-graph H
must have 4k vertices, of which half have degree 2k and half 2k − 1, for
some k. Moreover, the regular and almost regular sc-graphs are in one-one
correspondence.

Proof: By Lemma 1.21 the degree of a regular sc-graph G on n vertices
must be r = (n − 1)/2. For r to be an integer, n − 1 must be even, and
therefore we must have n = 4k + 1 and r = 2k for some k.

To show that G has no vertices at distance 3 or more, let v and w be non-
adjacent vertices of G. Of the remaining 4k − 1 vertices, 2k are neighbours
of v, and 2k are neighbours of w. By the Pigeonhole Principle v and w must
then have a common neighbour.

Now let H be an almost regular sc-graph on n vertices. By Lemma 1.21
s+ (s− 1) = 2s− 1 = n− 1. Then n = 2s, so we must have s = 2k for some
k; since n is even, exactly half the vertices must have degree s and half s−1.

The last part is just a special case of 1.40, since regular sc-graphs are
also Eulerian: the maximal fixed subgraph of a regular sc-graph is almost
regular, and as in 1.40 each almost regular sc-graph H is the maximal fixed
subgraph of exactly one regular (Eulerian) sc-graph. ¤

1.42. We can define a concept similar to exchangeable sets for any even-
order graph. Let H be a graph on 2k vertices with some automorphism α.
If H1 and H2 are disjoint sets of k vertices each, such that α(H1) = H2 and
α(H2) = H1, then we say that H1 and H2 are interchangeable sets, and that
they are interchanged by α; the subgraphs induced by H1 and H2 are called
interchangeable subgraphs.

It is easy to see that a pair of exchangeable subgraphs must be comple-
ments of each other, and must each contain a pair of interchangeable sets.
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P.S. Nair [266] showed that the converse is also true. Let H be a graph with
interchangeable setsH1 = {v1, v2, . . . , vk} andH2 = {α(v1), α(v2), . . . , α(vk)};
we will construct a sc-graph containing H and H as exchangeable subgraphs.
Take a copy ofH, with vertices {v1, v2, . . . , vk} and {α(v1), α(v2), . . . , α(vk)}.

Now define the first cycle of a permutation σ to be

(v1v1α(v1)α(v1)α
2(v1)α

2(v1)α
3(v1)α

3(v1) · · · ).

Let j be the least integer for which v1 = αj(v1). Then j = 2s for some s,
and the cycle has length 4s. If there is a vertex v2 not included in this cycle,
we can define another cycle as above, and so on until σ includes all vertices of
H andH. All cycles will have length a multiple of 4 and so we can construct a
bipartite self-complementary graph B with bipartite antimorphism σ. Then
H ∪B ∪H (fig is a self-complementary graph with antimorphism σ.

Nair claims, without proof, that in this way we can construct all self-
complementary graphs on 4k vertices containing H and H as vertex-disjoint
subgraphs. In particular, he claims that if H ′ is a graph on 2k vertices which
does not have an automorphism α interchanging some subgraphs H ′

1 and H
′
2

on k vertices, then there is no sc-graph G on 4k vertices containing vertex-
disjoint copies of H ′ and H ′. This is not obviously true, and so we list it as
an open question:

Problem. If a sc-graph G on 4k vertices contains H and H as vertex-
disjoint induced subgraphs, must these subgraphs be exchanged by some
antimorphism? If not, must H at least contain a pair of interchangeable
sets? What if |V (H)| = 2k?

1.43. Molina [255] studied the structure of odd order sc-graphs more closely,
with a view to generating them efficiently. Let v be in F (G), σ be an anti-
morphism fixing v, X be the set of neighbours of v, and Y = V (G)−X−{v}.
Then σ(X) = (Y ) and σ(Y ) = X, so that G[X] = G[Y ]. Moreover, σ maps
the induced bipartite graph G[X,Y ] with partition P = (X,Y ) onto its bi-
partite complement K|X|,|Y | − G[X,Y ]. (We have to specify the partition
explicitly since disconnected bipartite graphs do not have a unique bipartite
complement.)

We say that G[X,Y ] is a bipartite self-complementary graph with respect
to K|X|,|Y |. Since σ|G[X,Y ] switches the sets of the partition, we call it a mixed
bipartite antimorphism. Bipartite self-complementary graphs are treated in
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more detail in Chapter 5; in particular, it is proved that a mixed bipartite
antimorphism must have cycles whose length is a multiple of 4.

So if A, B are graphs such that A ∼= G[X], and B ∼= G[X,Y ], we can
sketch G as in Figure 1.7.

A B Av

Figure 1.7: The structure of sc-graphs

We say that G is of type (A,B); while this tells us explicitly which vertices
of G are neighbours of the removed vertex v, it does not tell us what the
maximal fixed subgraph is. Given a graph A on 2k vertices, and a bipartite
self-complementary graph B on 4k vertices, there may be many ways of
superimposing copies of A and A on to the parts of B to get a sc-graph on
4k vertices.

So we have gained something and lost something. Just as we can have two
non-isomorphic odd order sc-graphs with the same maximal fixed subgraphs,
so we can have two non-isomorphic sc-graphs with the same type. However,
if we specify both the type and the maximal fixed subgraph, then we know
what G is.

1.44. Molina used his analysis to generate odd order sc-graphs systemati-
cally, using the following construction:

1. Take a (labelled) bipartite self-complementary graph B with parts X
and Y of size 2k each.

2. Take a bipartite antimorphism φ mapping X to Y and Y to X.

3. Take a (labelled) graph A with vertex-set X such that φ2(A) = A;
define C := φ(A) = φ(A).

4. Construct the graph GA,B = v + A ∪ B ∪ C, where v + A means that
v is joined to all the vertices of A. Then GA,B is a self-complementary
graph on 4k + 1 vertices with σ := (v)φ as an antimorphism.
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This construction has to be carried out for all labelled graphs A, and all
bipartite self-complementary graphs B which have a mixed antimorphism.
Isomorphism checks only need to be carried out between GA,B and GA′,B′

when A ∼= A′ and B ∼= B′, and one only needs to check for isomorphisms
which fix v, X and Y .

The procedure can stop as soon as the number of non-isomorphic graphs
generated equals the number of self-complementary graphs on 4k+1 (see 7.8
for a counting formula). If all possible graphs A, B have been used but
there are still sc-graphs missing, it will be necessary to repeat the procedure
with different permutations in step 2. However, Molina generated the 36
sc-graphs on 9 vertices using just one permutation for each choice of B. He
recommended using permutations with as many 4-cycles as possible.

Parthasarathy and Sridharan [285] gave a formula for the number of sc-
graphs with a given degree sequence. This may be incorporated into the
procedure, as once all the sc-graphs with a given degree sequence have been
generated, one can exclude any further graphs with the same degree sequence,
without the need for an isomorphism check.

1.45. We study antimorphisms and generation methods further in 4.12–
4.18, where we show how to construct systematically the self-complementary
graphs corresponding to a given permutation. In 2.11–2.12 we also outline a
method of proof which relies on basic properties of antimorphisms.

Planarity and thickness

1.46. The first few sc-graphs (Figure 1.1 are all planar, but they are the
exception rather than the rule. In fact quite a few of the results on sc-graphs
hold only for n sufficiently large, and the reader is cautioned from using the
first few sc-graphs as a representative sample. Sc-graphs in general have
too many edges to be planar, and the same is true for embeddings on other
surfaces.

Lemma. For any constant c, there are only a finite number of sc-graphs
with orientable genus g(G) ≤ c or thickness t(G) ≤ c. In particular, every
sc-graph on at least 9 vertices is non-planar.
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Proof: By the Ringel-Youngs and Euler formulas (c.f. [387, 13G, 14C, 14D]

the genus of a graph G with n ≥ 4 vertices is bounded by
⌈

(n−3)(n−4)
12

⌉

≥
g(G) ≥

⌈

|E(G)|−3n+6
6

⌉

, while the thickness is bounded by t(G) ≥
⌈

|E(G)|
3(n−2)

⌉

.

For sc-graphs this gives us

⌈

(n− 3)(n− 4

12

⌉

≥ g(G) ≥
⌈

n2 − 13n+ 24

24

⌉

and

t(G) ≥
⌈

n(n− 1)

12(n− 2)

⌉

.

Both inequalities tell us that G is definitely non-planar when n2 − 13n+
24 ≥ 0, that is when n ≥ 11. This was improved to n ≥ 9 in [32]. ¤

1.47. Let gM(G) be the maximum genus of the orientable surfaces on which
G has a 2-cell embedding. It is known that gM(G) ≤ 1

2
(n − |E(G)| + 1);

if the upper bound is reached, G is said to be upper embeddable. It was
proved by Nebeský [271] and Scotti [349] that either G or G must be upper
embeddable, so we have the following:

Theorem. All self-complementary graphs are upper embeddable. ¤

We briefly discuss sc-graphs with topologically self-dual maps in 3.25.

Eigenvalues

1.48. We saw in 1.30 how the non-standard adjacency matrix can be useful
in reasoning about self-complementary graphs. Gibbs studied the eigenvalues
of this adjacency matrix in [150, 151], providing the following results and a
conjecture.

Theorem. If G is a graph on 2k vertices (not necessarily self-complement-
ary), and x an eigenvalue of its non-standard adjacency matrix A′(G), then
x2−1
2

is an algebraic integer; in particular A′(G) is non-singular, and if x2 is
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an integer then x is odd. If G is a graph on 2k + 1 vertices, then A′(G) has
rank at least 2k. ¤

1.49. Theorem. Let G be a self-complementary graph with n = 4k or 4k+1
vertices and non-standard adjacency matrix A′(G). Then

A. A′(G) has exactly 4k non-zero eigenvalues, and one zero eigenvalue if
n = 4k + 1.

B. The non-zero eigenvalues occur in opposable pairs, ±a1,±a2, . . . ,±a2k,
and

∑2k
i=1 a

2
i =

(

n
2

)

. ¤

1.50. Theorem. If a sc-graph G on 4k vertices has an antimorphism with
cycles of equal length, and non-standard adjacency matrix A′(G), then

A. A′(G) is similar to a symmetric 2k × 2k matrix A1, whose diagonal
entries are s or −s, and where all other entries are ±e ± s, where e
denotes the 2× 2 identity matrix, and

s =

[

0 1
1 0

]

.

B. If from A1 we form the 2k × 2k matrix B1 by setting e = s = 1, and
B2 by setting e = −s = 1, then the eigenvalues of A′(G) are precisely
those of B1 together with those of B2.

C. If x is an eigenvalue of A′(G), then (x2 − 1)/4 is an algebraic integer.
In particular, if x2 is an integer, then x2 ≡ 1 (mod 4). ¤

1.51. Conjecture. The results of 1.50.C hold for any sc-graph on 4k ver-
tices.

1.52. What can we say about the eigenvalues of the usual 0 − 1 adjacency
matrix of self-complementary graphs? There is a certain degree of symmetry
in the spectrum ensured by the following result of Cvetković [97, 99, Sec.
2.2]. The final identity is also mentioned by Godsil and McKay [156], though
in [154, Ex. 4.10] it is reported with a misplaced bracket.
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Theorem. If λ is an eigenvalue of G with multiplicity m > 1, then −λ− 1
will be an eigenvalue of G with multiplicity either m − 1, m, or m + 1. If
A = A(G), J is the matrix of all 1’s, and j is a column of J , we also have

fG(λ− 1)

(−1)nfG(−λ)
= |I − (λI + A)−1J | = 1− jT (λI + A)−1j.

This expression is also equal to

1− 1

λ
WG(

−1

λ
)

where WG(λ) is the generating function for the number of walks in G. ¤

1.53. We can say more in the case of regular graphs. Sachs’ seminal 1962
paper included a study of the characteristic polynomial of regular graphs,
fG(λ) = |λI − A(G)|. It is known (c.f. [42, Prop. 3.1] that, for a connected
regular graph G of degree r and order n, fG(λ) has r as a simple root. Sachs
proved, moreover, that

(λ+ r + 1)fG(λ) = (−1)n(λ− n+ k + 1)fG(−λ− 1).

For a regular sc-graph on 4k + 1 vertices, this gives

(λ+ 2k + 1)fG(λ) = (2k − λ)fG(−λ− 1).

Writing the roots as λ1, . . . , λ4k, 2k we get:

Theorem[Sachs 1962]. If G is a rsc-graph on 4k + 1 vertices, then its char-
acteristic polynomial can be written as:

fG(λ) = (λ− 2k)
2k
∏

i=1

(λ− λi)(λ+ λi + 1).¤

1.54. Sachs also proved the following theorem which is not restricted to sc-
graphs, but gives an idea of the wealth of results this single paper contains:

Theorem. If G is a connected circulant graph on n vertices of degree r, then
for every divisor d of n there are natural numbers ud, vd with udvd = φ(d),
and an irreducible monic polynomial pd of degree ud such that

fG(λ) =
∏

d|n
[pd(λ)]

vd .
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Moreover, p1(λ) = λ − r and v1 = 1. If n is even, v2 = 1; while if n is odd,
vd = 2cd > 0 for some natural number cd. ¤

1.55. It follows from Beineke [33] that there are only six self-complementary
line graphs — K1, P4, C5, the A-graph, an almost regular sc-graph H8 on
8 vertices, and a vertex-transitive sc-graph H9 on 9 vertices (see Figure 1.8.
Incidentally, C5 and H9 are the Paley graphs on 5 and 9 vertices, respectively,
while P4 and H8 are their maximal fixed subgraphs.

Figure 1.8: The largest self-complementary line graph

Radosavljević and Simić have shown that these six graphs are also the
self-complementary generalised line graphs [295], that the first four are the
only sc-graphs which can be oriented to become a line digraph [296], and the
sc-graphs whose eigenvalues are all at least −2 have at most 13 vertices.

Let A(G)v1,...,vk denote the group of automorphisms of G which fix the
vertices v1 through vk individually. Then a graph G is said to be stable if its
vertices can be ordered v1, . . . , vn, so that, for 1 ≤ k ≤ n, the automorphism
group of G − {v1, . . . , vk} is A(G)v1,...,vk . Grant [161] showed that there are
only a finite number of graphs H such that L(H) and L(H) are both stable,
and that H = P4 is the only one that is self-complementary.

There are some restricted results about the underlying graphs of self-
converse line digraphs in [376]. It is proved in [5] that the graphs whose
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complement and line graph are isomorphic are just the pentagon, and the
triangle with three independent endvertices; while those digraphs with iso-
morphic converse and line digraph are determined in [204]. In particular,
the self-converse digraphs which are isomorphic to their line digraph are just
the circuits [260]. For further results and remarks about line graphs see 2.22
and 5.2.

1.56. Because of the importance of the isomorphism and recognition prob-
lem for self-complementary graphs, it would be interesting to know when
the spectrum of a sc-graph is unique, or whether the class of sc-graphs is
collectively characterised by their spectra. The problem here is the existence
of pairs of co-spectral graphs. Of course, a sc-graph is co-spectral to its com-
plement, and maybe this limits the range of other graphs to which it can be
co-spectral.

Problems. Can a self-complementary graph G be co-spectral to a graph
H which is not self-complementary? If such a graph exists, must it also be
co-spectral to H? When can a self-complementary graph G be co-spectral
to another self-complementary graph?

The following result of Johnson and Newman [214] may be useful in in-
vestigating these problems — if G and H are co-spectral, then G and H
are co-spectral if and only if there is an orthogonal matrix L, with row and
column sums all equal to 1, such that

LTA(G)L = A(H) and LTA(G)L = A(H).

(In fact the two equations are equivalent because LJ = JL = J , where J is
the all ones matrix).

Chromaticity

1.57. In one of the shortest and best known papers in graph theory, Nord-
haus and Gaddum [274] proved the following bounds on the chromatic num-
ber of a graph, and showed that they are attained by infinitely many graphs:

√
n ≤

√

χ(G)χ(G) ≤ χ(G) + χ(G)

2
≤ n+ 1

2
.
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Noting that a graph G is r-partite if and only if χ(G) = r, this gives us:

Theorem. Let G be a self-complementary graph. Then

√
n ≤ χ(G) ≤ n+1

2
.

In particular, for any constant r, there are only a finite number of self-comple-
mentary graphs which are r-partite. ¤

1.58. Theorem[Chao and Whitehead 1979].

A. For every m there is a sc-graph with χ(G) = m attaining the lower
bound of Theorem 1.57.

B. For every m ≥ 2 there is a sc-graph of diameter 3 with χ(G) = m
attaining the upper bound of Theorem 1.57.

C. For every m ≥ 3 there is a sc-graph of diameter 2 with χ(G) = m.

Proof: We will only prove B and C. We construct an infinite class of sc-
graphs Un as follows. When n = 4k, V (Un) = {1, 2, . . . , 4k}. The vertices
1, 2, . . . , 2k induce a complete graph; while 2k+1 is adjacent to {1, 2, . . . k},
2k + 2 is adjacent to {2, 3, . . . , k + 1}, and so on. This is illustrated in
Figure 1.9. When n = 4k+1, we add a vertex 4k+1 and join it to 1, 2, . . . , 2k.

The graph Un has diameter 3 because the vertices 3k and 4k are not
adjacent and have no common neighbour. It can also be seen that

χ(Un) =

{

2k, if n = 4k
2k + 1, if n = 4k + 1.

We now construct Wn, n ≥ 8. To each Un−4, add a P4 as in 1.13 (see
Figure 1.2), joining the end-vertices to each vertex of Un−4. Wn is a self-
complementary graph of diameter 2 and for which

χ(Wn) = χ(Un−4) + 1 =

{

2k − 1, if n = 4k
2k, if n = 4k + 1.

Finally, for n = 5 we define W5 to be the pentagon. ¤

1.59. A matching is a subgraph consisting of disjoint edges. Let aG(r) be
the number of matchings of G with r edges; then we define the matchings
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Figure 1.9: The graphs Un, n = 4, 5, 8, 9

polynomial of G to be

M(G;w) =

bn2 c
∑

r=0

aG(r) w
n−r.

Let P (G;λ) be the chromatic polynomial of G, which represents the num-
ber of ways of colouring G with λ colours such that no two adjacent vertices
receive the same colour. If we define bG(r) to be the number of partitions
of V (G) into n− r non-empty sets, each of which induces a null graph, and
(λ)r := λ(λ− 1)(λ− 2) · · · (λ− r + 1), then we can express P (G;λ) as

P (G;λ) =
n
∑

r=0

bG(r) (λ)n−r.
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Obviously, if G is self-complementary then P (G) = P (G); we say that G
and G are chromatically equivalent. But Koh and Teo [225], Liu, Zhou
and Tan [238] and Xu and Liu [395] have shown that for all n ≡ 0, 1
(mod 4), n ≥ 8, there exist graphs which are not self-complementary, but
which are nonetheless chromatically equivalent to their complements. This
answered a question of Akiyama and Harary [13].

Theorem[Farrell and Whitehead 1992]. Let G be a self-complementary
graph, and M(G;w), P (G;λ), be as above. Then bG(r) ≥ aG(r) for all r;
and there is at least one r for which bG(r) > aG(r) if and only if G contains
a triangle, that is G 6∈ {K1, P4, C5}. Moreover [Godsil 1981, Zaslavsky 1981,
Wahid 1983],

M(G;w) =

bn2 c
∑

r=0

(−1)raG(r) wrM(Kn−2r;w).¤

1.60. Theorem[Gutman 1980, Farrell and Whitehead 1992]. Let G be
a bipartite self-complementary graph with respect to Km,n, and M(G;w),
P (G;λ), be as above. Then

M(G;w) =

bn2 c
∑

r=0

(−1)raG(r) wrM(Km−k,n−k;w).¤

1.61. Some authors (c.f. Godsil [154]) define the matchings polynomial as

µ(G;x) :=

bn2 c
∑

r=0

(−1)raG(r)xn−2r.

It follows from Godsil (ibid., p. 97, 107) and Clapham [83] and Camion [61]
that when G is self-complementary, the n roots of µ(G, x) are all distinct
and real. The number of perfect matchings is denoted by pm(G), where
a perfect matching is a set of n

2
edges which contain each vertex exactly

once. Obviously pm(G) = 0 when G has odd order. We also have the rook
polynomial

ρ(G;x) :=
n
∑

r=0

(−1)raG(r)xn−r.
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With these definitions we have the following:

Theorem[Godsil 1993, p. 6, 7]. If G is a self-complementary graph then

µ(G, x) =
n
∑

r=0

aG(
n−r

2
)µ(Kr, x) =

bn2 c
∑

r=0

aG(r)µ(Kn−2r, x), and

pm(G) =
1
√
2π

∫ ∞

−∞
e−x

2/2µ(G, x) dx.¤

1.62. Theorem[Joni and Rota 1980, Godsil 1981]. If G is a bipartite self-
complementary graph, with respect to Kn,n. Then

pm(G) =

∫ ∞

0

ρ(G;x)e−x dx.¤

Proof: See Godsil’s paper for a similar expression for the usual sc-graphs.

1.63. Theorem[Godsil 1981]. Let G be a bipartite self-complementary
graph, with respect to Kn,n+a, for some a ≥ 0. Define a new rook poly-
nomial by

ρ′(G;x) :=
n
∑

r=1

(−1)raG(r)xn−r.

Then

aG(r) =
1

a!

∫ ∞

0

ρ′(G;x)e−xxa dx, and

∫ ∞

0

ρ′(G;x)ρ′(Km,m+a;x)e
−xxa dx =

{

n!(n+ a)!aG(n−m), m < n
0, m ≥ n.¤

The Hadwiger and Strong Perfect Graph

Conjectures

1.64. The clique number of a graph is the size of its largest complete sub-
graph. It is obvious that, if a graph contains a complete subgraph of size r,
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then its chromatic number will be at least r. The converse, however, does
not hold. For example, C2k+1, k > 1, has chromatic number 3 and clique
number 2. The complement of such an odd circuit has clique number k but
chromatic number k + 1. (In general, the difference between clique number
and chromatic number need not be 1 — it can be arbitrarily large [210]).

A graph is said to be perfect if for every induced subgraph the chromatic
number equals the clique number. Obviously neither a perfect graph nor its
complement can contain an induced odd circuit of size at least 5. Berge has
conjectured that the converse is true.

Strong Perfect Graph Conjecture. A graph G is perfect if and only if
neither G nor G contains an induced odd circuit of size at least 5.

1.65. Theorem[Corneil 1986]. The Strong Perfect Graph Conjecture is true
in general if and only if it is true for (biregular) self-complementary graphs.

Proof: Obviously a self-complementary counter-example would show the
conjecture to be false. We will show that, conversely, if the conjecture is false,
there must be at least one (biregular) self-complementary counter-example.

Let G be a graph which contains no large odd holes but is not perfect. We
create a sc-graph P(G,G) by forming the P4-join of (G,G,G,G) (see 1.26).
P(G,G) is not perfect because it contains G as an induced subgraph. It can

also be checked that P(G,G) ∼= P(G,G) = P(G,G), and does not have any
large odd hole, so it forms a counterexample to the SPGC.

To show the second part, we first construct a regular counterexample
H. We let r = ∆(G) if ∆(G) is odd, and r = ∆(G) + 1 if ∆(G) is even.
Construct the graph Tr as follows: take the complement of the union of one
P3 and (r − 1)/2 copies of K2; then add a K2 to the middle vertex of the
original P3. Tr has degree sequence (1, r, r, . . . , r). Now to each vertex u in
G we add r − deg(u) copies of Tr, merging the end-vertices of the Tr’s with
u. This gives us a regular graph of degree r, which is imperfect because it
contains G as induced subgraph, but which contains no large odd hole since
neither G nor the Tr’s do.

Then P(H,H) will be a biregular self-complementary counterexample to
the SPGC. ¤

1.66. Although a graph with chromatic number r need not contain a clique
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of size r, Hadwiger conjectured that it must be contractible to a clique of
size r. If true, this would be much stronger than the Four Colour Theorem.

Define a Hadwiger clique of G to be a collection of nonempty, pairwise
disjoint subsets of V (G) such that each set in the collection induces a con-
nected graph and every two sets in the collection are joined with at least one
edge. The Hadwiger number of G, η(G), is the largest h such that G has
a Hadwiger clique with h elements. Then the conjecture can be stated as
follows:

Hadwiger Conjecture. For any graph G, η(G) ≥ χ(G).

Zelinka conjectured the Nordhaus-Gaddum result η(G) + η(G) ≤ n + 1.
This was apparently first proved [38] then disproved [226], but in any case
Rao [302, Theorem 4.1] announced the following, without proof:

Theorem. For a self-complementary graph of order n

χ(G) ≤ n+1

2
≤ η(G).

In particular, the Hadwiger conjecture is true for sc-graphs. ¤

The chromatic and total chromatic index

1.67. A proper edge-colouring is a colouring of the edges in which no two
adjacent edges have the same colour. The minimum number of colours needed
for a proper edge-colouring on G is called the chromatic index, χ′(G). It is
well known [Vizing 1964] that

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

where ∆(G) is the maximum valency of G. Graphs with χ′(G) = ∆(G) are
said to be of Class One, while those with χ′(G) = ∆(G)+1 are of Class Two.

A proper total colouring is a colouring of the edges and vertices of G such
that no two incident or adjacent elements have the same colour. The least
number of colours with which this can be done is called the total chromatic
index, χt(G).
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Problem[Rao 1979a]. Verify that the Behzad-Vizing conjecture holds for
self-complementary graphs:

∆(G) + 1 ≤ χt(G) ≤ ∆(G) + 2.

1.68. Wojda and Zwonek [391] have put forward the following:

Conjecture. A self-complementary graph G is of Class Two if and only if
it is regular.

1.69. Now a graph G of order n is said to be overfull if |E(G)| > bn
2
c∆(G).

Since in any colour class we may have at most bn
2
c edges, it is clear that

overfull graphs are of Class Two. In particular, non-null regular graphs of
odd order are of Class Two [34]. Wojda and Zwonek pointed out that in fact
a self-complementary graph is overfull if and only if it is regular.

So the conjecture is easily verified in one direction, and there is some
support for it in the other direction too. Chetwynd and Hilton made the
following conjecture in [76]:

Conjecture. Let G be a graph of order n with the maximum vertex degree
∆(G) > n

3
. Then G is of Class Two if and only if G contains an overfull

subgraph H with the maximum vertex degree ∆(H) = ∆(G).

Wojda [390] proved that a graph G with at most n(n−1)
4

edges, and
∆(G) ≥ n−1

2
, does not have any overfull subgraph H with ∆(H) = ∆(G)

and |V (H)| < |V (G)|. Therefore the Chetwynd-Hilton conjecture for sc-
graphs is equivalent to the Wojda-Zwonek conjecture.

1.70. There is one other class of sc-graphs whose colour class is known
— Wojda and Zwonek proved in [391] that every sc-graph with cyclic anti-
morphism is of Class One. Their proof essentially consists of Theorems 1.71
and 1.72, although it is complicated by numerous other considerations which,
with hindsight, are seen to be unnecessary. We present the re-organised proof
here for the sake of completeness. We note that Theorem 1.71, along with
the observation in 1.69 on odd-order regular graphs, implies that a non-null
connected circulant graph is of Class One if and only if it has even order.
This was first proved by Sun [366] and other authors.
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1.71. Theorem. Let G be a circulant graph of even order with cyclic au-
tomorphism α = (1, 2, ..., 2k). Let G1 and G2 be the (isomorphic) subgraphs
induced by the odd and even vertices respectively. If G1 and G2 are of Class
One, or if there is an edge joining a vertex in G1 to a vertex in G2, then G
is of Class One.

Proof: Case 1: G1 is of Class One.
Colour G1 with ∆(G1) colours, and denote the colour of each edge e =

{v, w} ∈ G1 by c(e). The edges of G2 can be written as α(e) = {α(v), α(w)},
and we colour them by defining c(α(e)) = c(e). If there is any edge between
G1 and G2, say f = {i, i+ t}, for some odd t, then f, α2(f), α4(f), . . . , α2k(f)
is a 1-factor of G which can be given some new colour c(f). We repeat this
process until all the 1-factors between G1 and G2 (if any) are coloured.
Case 2: G1 is of Class Two.

Colour G1 with ∆(G1) + 1 colours. Note that at each vertex v there are
just ∆(G1) incident edges, so there must be a colour which is missing at v.

By hypothesis, there is an edge between G1 and G2, say f = {i, i + t},
for some odd t. Then f, α2(f), α4(f), . . . , α2k(f) is a 1-factor F of G. We
now colour the edges of G2 by defining c(αt(e)) = c(e). This ensures that for
every edge α2j(f) = {i+ 2j, i + 2j + t}, the colour missing at i+ 2j will be
the same colour missing at i + 2j + t, and we can use this to colour α2j(f).
So now H = G1 ∪ F ∪G2 is coloured with ∆(G1) + 1 = ∆(H) colours.

Any remaining edges between G1 and G2 can be grouped into 1-factors
and coloured as before. ¤

1.72. Theorem. If G is a self-complementary graph with cyclic antimor-
phism σ = (1, 2, 3, ..., 4k) then G is of Class One.

Proof: Consider the two subgraphs Godd and G even induced by the set of
odd and even vertices, respectively. Any edge between G odd and G even must
be of the form e = {i, i+t}, for some odd t. But since σ2 is an automorphism
of G, the edges e, α2(e), α4(e), . . . , α2k(e) will form a 1-factor of G. The edges
between G odd and G even thus form some number s of 1-factors, which can
be coloured with s colours.

Since σ2 is an automorphism of G, G odd will be a circulant graph of
degree r − s, and G even a circulant graph of degree 4k − 1− r − s for some
r. Without loss of generality we consider the case r > 4k − 1− r. It is then
enough to show that G odd can be coloured with r colours, in other words,
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that it is of Class One.
Now G odd has vertices 1, 3, 5, . . . , 4k − 1. The subgraphs G1, G2 defined

in Theorem 1.71 will have vertices 1, 5, 9, . . . , 4k − 3 and 3, 7, 11, . . . , 4k − 1
respectively. We will show that the vertex 1 ∈ G1 must be adjacent to at
least one vertex of G2 so that G odd satisfies the conditions of Theorem 1.71.

Since σ is an antimorphism, σ1−2i is also a antimorphism for any integer
i. Now consider the pair of vertices {1, 2i}. We have

{1, 2i} ∈ E(G)⇔ {1+(1−2i), 2i+(1−2i)} 6∈ E(G)⇔ {4k−2i+2, 1} 6∈ E(G),

where labels are taken (mod 4k). So the vertex 1 must be adjacent to
precisely half of the 2k vertices of G even (in other words, s = k). If 1 is not
adjacent to any of the vertices 3, 7, 11, . . . , 4k− 1, then it can be adjacent to
at most k − 1 of the vertices of G odd, and so its total degree is r ≤ 2k − 1,
which contradicts the fact that r > 4k − 1− r. ¤

1.73. There is a counterpart of 1.57 for the chromatic index, found by
Vizing [378] and Alavi and Behzad [15]:

n− 1 ≤ χ′(G) + χ′(G) ≤ 2(n− 1) if n is even, and

n ≤ χ′(G) + χ′(G) ≤ 2n− 3 if n is even.

For sc-graphs on 4k vertices this gives us the bounds

2k ≤ χ′(G) ≤ 4k − 1

which is trivial since 2k ≤ ∆(G) ≤ 4k − 2. For sc-graphs on 4k + 1 vertices
we get the slightly more interesting

2k + 1 ≤ χ′(G) ≤ 4k − 1.

The lower bound is only useful for odd order sc-graphs with ∆(G) = 2k,
that is, regular sc-graphs; but we already know from 1.69 that they are of
Class Two. The upper bound at least tells us that odd order sc-graphs with
end-vertices are of Class One.

More Nordhaus-Gaddum results

1.74. The Nordhaus-Gaddum results mentioned in 1.57 were only the first in
a long and seemingly endless stream of results relating various graph param-
eters to those of the complementary graph. These give immediate corollaries
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for self-complementary graphs. Some of them, like those in 1.73, turn out to
be of little, if any use. In any case, even if the original bounds are attained
by an infinite number of graphs, this does not necessarily mean that the
corresponding bounds for self-complementary graphs will be attained by any
sc-graphs. We will therefore present only a sample of these results, omitting
the (usually straightforward) derivation.

Let Ψ(G) be the pseudoachromatic number, the greatest number of colours
which can be used to colour the vertices such that for any two colours i, j,
there exist adjacent vertices coloured i, j. (Note: there may even be adjacent
vertices with the same colour). It follows from Gupta [167] that

Ψ(G) ≤ 1

2

⌈

4n

3

⌉

and

χ(G) + Ψ(G) ≤ n+ 1

1.75. A graph G is said to be k-degenerate if the minimum degree of each
induced subgraph does not exceed r. Thus 0-degenerate graphs are null
graphs and 1-degenerate graphs are forests. The k-partition number ρk of a
graph is the least number of subsets in a partition of V (G) such that each
subset induces an k-degenerate subgraph. Obviously ρ0(G) = χ(G), while
the 1-partition number is also known as the vertex arboricity.

It follows from Lick and White [235] that for sc-graphs
√

n

k+1
≤ ρk(G) ≤ n+1+2k

2(k+1)
.

1.76. The k-clique chromatic number χk(G) is the smallest number of colours
in a vertex-colouring of G in which no k-clique is monochromatic. Since
χ2(G) = χ(G) we have another generalisation of the chromatic number. If
we let R denote the Ramsey number R(k, k), then Achuthan’s [4] Nordhaus-
Gaddum result gives us the following bounds for self-complementary graphs:

√

n

R−1
≤ χk(G) ≤ n+2k−3

2(n−1)

1.77. We say that a vertex v covers an edge e (and e covers v) if v is incident
with e. The minimum number of vertices [edges] covering all the edges [non-
isolated vertices] of G is called the vertex- [edge-] covering number of G and
denoted by α0(G) [α1(G)].
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A set of vertices [edges] which are pairwise non-adjacent is said to be
independent. The maximum size of an independent set of vertices [edges] is
call the vertex- [edge-] independence number of G, denoted by β0(G) [β1(G)].
For self-complementary graphs, it follows from Gallai [133] that

α0(G) + β0(G) = n = α1(G) + β1(G),

and from Cockayne and Lorimer [92] and Erdős and Schuster [116] that
⌊

n+1

3

⌋

≤ β1(G) ≤ n

2
.

1.78. An out-domination set of a digraph D is a set S of vertices such that
every vertex of D−S is adjacent from some vertex of S. The out-domination
number γ+(D) is the minimum cardinality of an out-domination set. It
follows from Chartrand, Harary and Quan Yue [70] that, for a connected
self-converse digraph of order n

γ+(D) ≤ 2n

3
.

1.79. Structural Nordhaus-Gaddum results were investigated in a series
of papers by Akiyama and Harary, with Ando, Exoo and Ostrand [7, 8,
9, 10, 11, 12, 13, 14]. Some other results can be seen in 1.55 and 2.22–
2.23. For bipartite Nordhaus-Gaddum results we refer to Sivagurunathan
and Mohanty [352] and Goddard, Henning and Swart [152].

1.80. Finally, we note a minor (no pun intended) result which may be useful.
Let the vertices of G be labelled arbitrarily v1, v2, . . . , vn, and let M be the
n× n matrix where

a′ij =







deg(vi), if i = j,
0, if i is not adjacent to j,
−1, if i is adjacent to j.

Then by the matrix-tree theorem (c.f. [387, Thm. 10C]), the cofactor of any
element gives the number T (G) of spanning trees of G. If, moreover, G is
self-complementary, this means that

|M1| = |(n− 1)I + J −M1| = T (G)

43



whereM1 is the matrix obtained fromM by deleting the first row and column,
I is the identity matrix and J the matrix with all entries 1.

Interestingly, when investigating spanning trees Sedláček [350] said that
the only graphs he could find with the same number of spanning trees as
their complement were self-complementary graphs. It would be too much to
ask that this be true in general, but it would be nice to know how small a
non-self-complementary example can be.
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Chapter 2

Circuits, paths and cliques

2.1. It is part of most graph theorists’ education to learn that if a graph
on at least 6 vertices does not have a triangle, then its complement will.
This immediately tells us that a self-complementary graph G on at least 6
vertices contains a triangle; in fact it follows from Albertson [18] that G must
contain a triangle with two vertices of the same degree, and from Albertson
and Berman [19] that G must contain a triangle such that the degrees of any
pair of vertices differ by no more than 5.

We can look at these as results about triangles, circuits, complete graphs
or Ramsey theory. In fact we will see that there are many results involving
sc-graphs in each of these areas1, but we start by considering triangles per
se.

2.2. By Turán’s theorem, all graphs with m > bn
2
cbn+1

2
c edges contain a

triangle, and this is best possible. But we can still say something about
graphs with a few less edges. Brandt [47] has proved that every graph G
that is not a star and does not contain C3, C4, C5 or C6 is isomorphic to a
subgraph of G. Any such graph with 1

2

(

n
2

)

edges would then be a self-comple-
mentary graph without a triangle, which is impossible for n ≥ 6. So every
graph on n ≥ 6 vertices with m ≥ n(n−1)

4
edges must contain a C3, C4, C5 or

C6.

If Faudree et al.’s conjecture [121] is true, then Brandt’s result can be
improved to include just C3 and C4 in the conditions, which would lead to a

1There is a result about the strong perfect graph conjecture in 1.65.
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similar improvement in the result above.

Triangle numbers and paths

2.3. The triangle number t(v) [t(e)] of a vertex [edge] in a graph G is the
number of triangles in G containing v [e], while t(G) is the total number of
triangles in G. The triangle number of a vertex v in G will be denoted by
t(v). We use N(v) [E(v)] to mean the set of all vertices [edges] adjacent
[incident] to v.

Obviously t(v) is the size of the neighbourhood of v, i.e. the number of
edges in the subgraph induced by N(v); while t(e) is the number of common
neighbours of the end-vertices of e. See also 1.19.

We will need the following sc-graph Gmax(n). Let V (Gmax(4k)) = A∪B,
where

A = {1, 3, . . . , 4k − 1}, B = {2, 4, . . . , 4k},
A is complete and B is independent. Further, for i ∈ A and j ∈ B, i ∼ j if
and only if

• j = i+ 1, or

• j = i+ 3 and i ≡ 3 (mod 4), or

• j > i+ 4.

When n = 4k + 1 we add a vertex 4k + 1 and join it to all the vertices of A.

Lemma[Nair 1994, Nair and Vijayakumar 1994]. Let G be any graph. Then

A. t(v) = 1
2

∑

e∈E(v) t(e) for any v ∈ V (G).

B. t(G) = 1
3

∑

v∈V (G) t(v) =
1
3

∑

e∈E(G) t(e). ¤

2.4. Theorem. Let G be a graph with n vertices and m edges. Then

A. [Nair 1994, Nair and Vijayakumar 1994] For every v ∈ V (G)

t(v) + t(v) =

(

n− d(v)− 1

2

)

−m+
∑

v∈N(v)
d(v).
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B. [Goodman 1959] t(G) + t(G) =
(

n
3

)

− (n− 1)m+ 1
2

∑

v∈V (G) d
2(v). ¤

Proof: We will only prove A, as B then follows with little difficulty, as
do the next two corollaries. Let d := d(v) and N := N(v), and define
N := V (G)−N(v)−{v}. Then |N | = d, |N | = n−d− 1, t(v) is the number
of edges in G[N ], and t(v) the number of edges in G[N ].

Now let D =
∑

u∈N d(u) and D =
∑

u∈N d(u). Then D + D + d =
∑

u∈V (G) d(u) = 2m.
The contribution to D by the d edges of G incident at v is d, and by the

t(v) edges in G[N ] is 2t(v). So the number of edges in G with one end in N
and the other end in N is D − d− 2t(v).

The number of edges in G[N ] is
(

n−d−1
2

)

− t(v), and the contribution of

these edges to D is 2
(

n−d−1
2

)

− 2t(v). So the number of edges with one end

in N and the other end in N is D − 2
(

n−d−1
2

)

+ 2t(v). Obviously, this must
be equal to D − d− 2t(v), and the result then follows. ¤

2.5. Theorem. If G is a self-complementary graph, then

A. [Rao 1979c] The number of triangles depends only on the degree se-
quence. In fact

t(G) =
1

2

n
∑

i=1

(

di
2

)

− n(n− 1)(n− 2)

24
.

B. [Clapham 1973] The lower bound for A is achieved precisely by regular
and almost regular graphs for n odd or even, respectively, and we have

t(G) =















1
3
k(k − 1)(4k − 2) for almost regular sc-graphs

on 4k vertices,
1
3
k(k − 1)(4k + 1) for regular sc-graphs

on 4k + 1 vertices.

C. [Rao 1979b,c] The upper bound for A is achieved precisely by Gmax(n)
(in fact there is no other sc-graph with the same degree sequence), and
we have

t(G) =

{

k
3
(k − 1)(8k − 1) if G = Gmax(4k),
(

2k
2

)

+ k
3
(k − 1)(8k − 1) if G = Gmax(4k + 1).
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D. [Rao 1979b] There is a sc-graph G on 4k vertices with t(G) = r if and
only if r is even and lies between the upper and lower bounds given
above.

E. [Rao 1979b] There is a sc-graph G on n = 4k+1 vertices with t(G) = r
if and only if r lies between the upper and lower bounds given above,
with the exceptions of r = 9, 12, 13 for n = 9, and r = 33, 41, 49, 54, 57
for n = 13. ¤

2.6. We now consider the number of paths of length three or more. For
convenience we define

f(n) = 2

(

n(n− 1)/4

2

)

− 3

(

n

4

)

and use pk(G) to denote the number of paths of length k in G.

Theorem[Rao 1979c]. If G is a self-complementary graph with degree se-
quence π = (d1, ..., dn), then

p3(G) = p3(π) = f(n) + (n− 5)
n
∑

i=1

(

di
2

)

,

and so

p3(G)− 2(n− 5)t(G) = f(n) +
n(n− 1)(n− 2)(n− 5)

12
.

The lower and upper bounds of p3(G) are thus achieved by the same graphs
as in 2.5.B and 2.5.C, respectively, and we have

p3(G) =































f(n) + (n− 5)(8k3 − 8k2 + 2k) for almost regular sc-graphs
on 4k vertices,

f(n) + (n− 5)(8k3 − 2k2 − k) for regular sc-graphs
on 4k + 1 vertices,

f(n) + (n− 5) 2k
3
(16k2 − 15k + 2) if G = Gmax(4k),

f(n) + (n− 5)k
3
(32k2 − 6k − 5) if G = Gmax(4k + 1). ¤
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2.7. Theorem[Rao 1979c]. If G is a s-c graph of order n, and i > 3, then

pi(G) ≡ (n− i)pi−1(G) (mod 2).¤

2.8. Corollary[Rao 1979c]. If G is a sc-graph of order n, then

A. p3(G) ≡ bn
4
c (mod 2).

B. p4(G) is odd if and only if n = 4k + 1 and k is odd.

C. pi(G) is even for i ≥ 5, and in particular

D. [Camion 1975] the number of Hamiltonian paths is even iff n > 5. ¤

2.9. Define the Hamiltonian path graph H(G) of a graph G to be the graph
having the same vertex set as G and in which two vertices u and v are
adjacent if and only if G contains a Hamiltonian u-v path. A graph G is a
self-Hamiltonian path graph if G ∼= H(G).

A graph G of even order n ≥ 4 is chord additive if the vertices of G can
be labelled so that

A. v1, v2, · · · , vn, v1 is a Hamiltonian cycle C of G;

B. dG(vi) = 2 for each even i, 2 ≤ i ≤ n;

C. C contains chords; and

D. vjvk being a chord of C implies vj+2hvk+2h is a chord of C for every
integer h, where the subscripts are taken modulo n.

Chartrand, Kapoor and Nordhaus [71] showed that a Hamiltonian graph
is a self-Hamiltonian path graph if and only if G is chord-additive or G ∈
{Kn, Cn, Km,m, Km + Km}; they conjectured that this result is true for all
graphs. (In other words, they conjectured that every self-Hamiltonian path
graph is Hamiltonian; we note that the trivial counterexample Kn should be
excluded for this to hold). Thus no Hamiltonian self-complementary graph
is a self-Hamiltonian path graph.

The question of whether there are non-Hamiltonian self-complementary
path graphs is thus still open. We cannot use Camion’s result on the parity of
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the number of Hamiltonian paths because, while a self-complementary self-
Hamiltonian path graph would have to have at least 1

2

(

n
2

)

Hamiltonian paths,
it may have more if there are two vertices joined by several Hamiltonian
paths. What we need is a suitable upper bound.

2.10. Problem. What is the maximum and minimum number of Hamilto-
nian paths and Hamiltonian circuits in a self-complementary graph of order
n? [Rao 1979c] In particular, can there be 1

2

(

n
2

)

or more Hamiltonian paths?

Circuits and Hamiltonicity

2.11. We now turn to circuits of any length, and then consider Hamiltonian
paths and circuits in more detail. We state the results mostly without proof,
but we outline a method of proof used repeatedly by Clapham and Rao, with
good results. Let G be a self-complementary graph, and σ an antimorphism
of G. Denote the cycles of σ by σ1, . . . , σs, with respective lengths l1, . . . , ls,
and the number of cycles by s = s(σ). For the sake of definiteness we assume
that the vertices of each cycle are numbered consecutively. We define the
digraph D = D(σ) to have vertex-set {1, . . . , s} and, for i 6= j, i → j if one
of the following conditions hold:

(1) li > 1, lj > 1 and some even vertex of σi is adjacent to some odd vertex
of σj in G.

(2) li = 1 and the vertex of σi is adjacent to an odd vertex of σj.

(3) lj = 1 and and an even vertex of σj is adjacent to the vertex of σi.

The following results then follow from this definition.

Lemma[Clapham 1973, 1974, c.f. Rao 1977a, 1979a]. Let D(σ) be as above.
Then

A. For all i 6= j, either i→ j or j → i or both.

B. Let li > 1 and lj > 1. If i→ j, then all even vertices of σi are adjacent
to the same (positive) number of odd vertices of σj, and all odd vertices
of σj are adjacent to the same (positive) number of even vertices of σi.
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If i 6→ j, then every odd vertex of σi is adjacent to every even vertex
of σj in G.

C. If li = 1 and i→ j, then the vertex of σi is adjacent to all odd vertices
and no even vertex of σj.

D. If lj = 1 and i→ j, then the vertex of σj is adjacent to all even vertices
and no odd vertex of σj. ¤

2.12. It follows from A, and from the results of Rédei and Camion (2.13) that
D(σ) has a directed Hamiltonian path, and that if D(σ) is strongly connected
it has a directed Hamiltonian circuit (see Clapham [83] and Rao [305, Lemma
3.8], for further details). The proofs of many of the results in this section
then have the following pattern.

Let G be a self-complementary graph for which we wish to prove property
P, and let σ be an appropriate antimorphism, usually chosen to have s(σ)
as large as possible (for such a σ, li must be a power of 2 for all i). Prove
that P holds when s(σ) = 1. When s(σ) > 1 order the cycles into the form
σa, σb, . . . , σz where a, b, . . . , z is a Hamiltonian path or circuit in D(σ), and
use this to prove that property P holds. If D(σ) is not strongly connected,
then each of its strong components give a set of cycles of σ which induce a
sc-subgraph of G; prove that P holds on each of these subgraphs, and then
combine them in an appropriate way to show that it holds on G too.

The first result in our list is easily stated but impressive.

Theorem[Rao 1977a]. If G is a self-complementary graph on n > 5 vertices,
then for every integer 3 ≤ l ≤ n−2, G contains a circuit of length l. Further,
if G is Hamiltonian then it is pancyclic. ¤

This means that the circumference of a self-complementary graph is ei-
ther n (that is, the graph is Hamiltonian), n − 1 or n − 2. The graphs
with circumference n− 2 are scarce even among sc-graphs; see 7.16 for their
enumeration.

2.13. Rao’s theorem implies that every sc-graph has a path with at least
n − 1 vertices, but we can say more. Clapham and Camion both noted
that Chvátal’s theorem on Hamiltonian circuits has a simple corollary on
Hamiltonian paths, which we apply below to sc-graphs.
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Chvátal [79] showed that if G is a finite graph with n ≥ 3 vertices, and
degree sequence d1 ≤ · · · ≤ dn such that

di ≤ i <
n

2
⇒ dn−i ≥ n− i

then G has a Hamiltonian circuit.

Theorem[Clapham 1974, Camion 1975]. Every self-complementary graph
G has a Hamiltonian path.

Proof: The degree sequence of G satisfies

di ≤ i− 1 <
n+1

2
⇒ dn+1−i ≥ n− i.

If we add a vertex v to G, and join it to all the vertices of G, we get a graph
satisfying the conditions of Chvátal’s theorem, and which must thus have a
Hamiltonian circuit. Then G must contain a Hamiltonian path. ¤

Clapham also gave an independent proof of this result, establishing the
method described in 2.12, while Camion proved that the number of Hamil-
tonian paths in a sc-graph is even iff n ≥ 5.

2.14. Clapham then turned to infinite self-complementary graphs. Many
theorems in infinite graph theory are concerned with locally finite graphs,
that is, those graphs in which every vertex has finite valency; however,
these can never be self-complementary, so Clapham considered instead quasi-
locally-finite graphs, in which every vertex has either finite valency or cova-
lency (the covalency of v in G is just the valency of v in G).

Theorem[Clapham 1975]. Every quasi-locally-finite sc-graph is countable,
and has a spanning subgraph consisting of two 1-way infinite paths. ¤

This result cannot be extended further, as Clapham gave an example of a
countable self-complementary graph (not quasi-locally-finite) which requires
a countable infinity of 1-way infinite paths to form a spanning subgraph.

2.15. Not every sc-graph has a Hamiltonian circuit, but Rao has given a good
characterisation of those which do; this is in sharp contrast to the general
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situation, where the Hamiltonian problem remains one of the most difficult
and important unsolved questions (it is in fact NP-complete — see 4.3).

A graph G is said to be constricted if there is a nonempty subset X of
V = V (G) such that G[V −X] has more than |X| components. The circuits
Cn are not constricted, and thus no Hamiltonian graph is. For sc-graphs, the
converse holds as well. In fact, Rao proved a stronger result.

G is said to be highly constricted if there is a nonempty subset X of V
such that

A. G[V −X] has more than |X| components,

B. G[X] is complete, and

C. for all u ∈ X and v 6∈ X, dG(u) > dG(v).

For convenience, we will denote the P4-join of (Kk, Kk, Kk, Kk) (see 1.26) by
G∗(4k). This graph is constricted but not highly constricted; Rao’s result
says that it is the only sc-graph of this type.

Theorem[Rao 1979d]. A self-complementary graph G is non-Hamiltonian
if and only if it is constricted. All graphs of this type are either highly con-
stricted or isomorphic to G∗(4k). ¤

It also follows from [170] that if a sc-graph G is non-Hamiltonian and has
minimum degree δ(G), then G contains a Kp,q for all p+ q ≤ δ(G) + 1.

2.16. We note that it is very easy to detect (algorithmically) whether a graph
is isomorphic to G∗(4k). Rao has shown that recognising highly-constricted
sc-graphs is also very easy, as they are determined by their degree sequence.
If a graph has degree sequence π = (d1, . . . , dn), then it is said to be a
realisation of π, and we say that π is a graphic sequence. The sequence π−f
is defined to be (d1 − f, . . . , dn − f).

Theorem. Let G 6= G∗(4k) be a self-complementary graph with n ≥ 8
vertices, and degree sequence π = (d1, . . . , dn) arranged in non-increasing
order. Then the following are equivalent:

A. G is Hamiltonian,

B. there is a Hamiltonian realisation (not necessarily self-complementary)
of π,
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C.
∑s

i=1 di < s(n−s−1)+∑s
j=1 dn−j−1 for every s < n

2
with ds > ds+1. ¤

We note that the theorem is not valid for degree sequences in general [298],
but it does tell us whether a potentially self-complementary degree sequence
has a Hamiltonian realisation, in which case all self-complementary realisa-
tions are Hamiltonian or isomorphic to G∗(4k).

In particular, every regular sc-graph is Hamiltonian. This is also true of
biregular sc-graphs with degrees r, 4k− 1− r where k < r < 3k− 1. Maybe
it is not a coincidence (see 4.16) that sc-graphs with cyclic antimorphisms
have degrees r and 4k − 1− r for some k ≤ r ≤ 3k − 1.

2.17. Rao remarked that Chvátal’s third conjecture in [80] is true for self-
complementary graphs:

Conjecture. If G is non-Hamiltonian, then it is degree majorised by a graph
H containing a set S of vertices with |S| ≤ ξ(G), k(G− S) = |S|+ 1.

Here, k(G) denotes the number of components of G, and ξ(G) its cycla-
bility. A graph is s-cyclable if any s vertices lie on a common circuit; so
“2-cyclable” is the same as “2-connected” (by Menger’s theorem), while “n-
cyclable” is the same as “Hamiltonian”. The cyclability ξ(G) is the largest
s for which G is s-cyclable.

Finally, a graph H with degree sequence (d′1 ≥ · · · ≥ d′n) is said to degree-
majorise a graph G with degree sequence (d1 ≥ · · · ≥ dn) if for all i, d

′
i ≥ di.

2.18. An r-factor of a graph is a regular spanning subgraph of degree r;
obviously a Hamiltonian graph has a 2-factor, but so does G∗4k, for exam-
ple. Rao [301] characterised sc-graphs with 2-factors, again in terms of their
degree sequences.

Theorem. Let G 6= G∗(4k) be a self-complementary graph with degree
sequence π. Then the following are equivalent:

A. G has a 2-factor

B. π − 2 is graphic

C. π has a realisation (possibly not self-complementary) with a 2-factor. ¤
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Rao conjectured that a sc-graph has an r-factor if and only if π − r is
graphic. Later [105] the following condition was added to the conjecture:

s
∑

i=1

di < s(n− f − 1) +
s
∑

j=1

dn−j−1 for every s <
n−4

2
with ds > ds+1.

However, Ando [25] constructed, for each r, a sc-graph with no r-factor,
although its degree sequence π satisfies the condition above, and π − r is
graphic.

2.19. We now give a theorem, due to Rao [305, 308], which classifies sc-
graphs according to their circumference, and characterises those sc-graphs
which do not have a 2-factor. In fact, Rao deduced the previous theorems
from the one below:

Theorem. Let G 6= G∗(4k) be a self-complementary graph on 4k+ε vertices,
where ε = 0 or 1. If G is not Hamiltonian then V (G) can be partitioned into
two sets V1, V2, with 4k1, 4k2 + ε vertices respectively, where k1 + k2 = k,
such that

A. H1 := G[V1] and H2 := G[V2] are sc-graphs.

B. G[Hi] = K2k1 and G[Lo] = K2k1 , where Hi := {v ∈ V1|dH1(v) ≥ 2k1}
and Lo := {v ∈ V1|dH1(v) < 2k1}.

C. Every vertex of V2 is adjacent to every vertex of Hi but to no vertex
of Lo.

Moreover, G has circumference n− 2 if and only if it satisfies A, B, C and:

D. H1 = G∗(4k1).

G does not have a 2-factor if and only if it satisfies A, B, C and:

D’. If k1 > 1 then H2 does not have a 2-factor. ¤

2.20. Although the last few theorems have given complete characterisations,
it is still useful to have conditions which are necessary but not sufficient for
the existence of a 2-factor or Hamiltonian circuit. It is well-known that any
graph has a Hamiltonian circuit if dv ≥ n

2
(Dirac’s Theorem), or even if
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du + dv ≥ n for all non-adjacent vertices (Ore’s Theorem c.f. [387, Thm.
7A]). Rao [305, Thm. A2] proved that for sc-graphs with n ≥ 8 vertices, it
is sufficient to have minimum degree at least n

4
, or du + dv ≥ n

2
for all non-

adjacent vertices; G∗(4k) is the only exception here as it has no Hamiltonian
circuit (though it does have a 2-factor).

Rao also constructed, for all feasible n ≥ 8, sc-graphs with minimum
degree bn

4
c − 1, and thus du + dv ≥ n

2
− 2 for all non-adjacent vertices, but

which have no 2-factor, much less a Hamiltonian circuit. These graphs (see
Figure 2.1) are obtained from G∗(4k) by joining the vertices of theKk’s either
to a single new vertex (for n = 4k + 1), or to all the vertices of a P4 (for
n = 4k + 4).

Kk

Kk

Kk

KkKk

KkKk

Kk

Figure 2.1: Sc-graphs with no 2-factor

2.21. A graph G in which every edge is contained in a Hamiltonian cir-
cuit is said to be strongly Hamiltonian. If, moreover, every pair of vertices
are endpoints of a Hamiltonian path, then G is said to be Hamiltonian con-
nected. (Contrast this with the concepts discussed in 2.9). A graph is r-
Hamiltonian if removing any set of at most r vertices leaves a Hamiltonian
graph. Rao [302] has posed the problem of characterising sc-graphs of each
of the three types. Carrillo studied the first two concepts in [63, 64]; an
example of his results is the following:

Theorem. Let G be a self-complementary graph with cyclic antimorphism
(v1 v2 v3 . . . v4k), where v1 is adjacent to v2, v3, and either all or none of the
vertices of the form v4s+2, s > 0. Then G is strongly Hamiltonian if and only
if it is Hamiltonian connected.

2.22. Rao [309] has also looked at the line graphs of sc-graphs and obtained
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the following.

Theorem. Let G be a sc-graph on n ≥ 8 vertices. Then

A. L(G) is pancyclic and strongly Hamiltonian.

B. L(G) is Hamiltonian connected if and only if it is 1-Hamiltonian, if and
only if the subgraph of G induced by the degree 2 vertices (if any) is
K2 or K4.

2.23. For further results about self-complementary line graphs see 1.55
and 5.2. The first part of 2.22.A also follows from a Nordhaus-Gaddum
result of Nebeský [268] (‘For any graph on more than 5 vertices, either L(G)
or L(G) is pancyclic’). Similar corollaries follow from other work of Nebeský:

Theorem. Let G be a self-complementary graph, and let eul(G) denote the
size of the largest Eulerian subgraph of G.. Then

A. [270] The square of G is Hamiltonian connected.

B. [269] If G has end-vertices then eul(G) = n−2; if G has no end-vertices,
then eul(G) ≥ n− 1.

Lai [233] further proved that if G has no end-vertices and n > 60, then

(1) eul(G) = n

(2) G has a 3-colorable cycle double cover, that is, G contains three sub-
graphs H1, H2, H3, each of whose vertices have even degree (in Hi),
such that every edge of G lies in exactly two Hi’s.

The following problems remain open.

2.24. Problems[Rao 1979a]. Characterise the following classes of graphs:

A. Strongly Hamiltonian sc-graphs

B. Hamiltonian-connected sc-graphs

C. r-Hamiltonian sc-graphs

D. Self-complementary digraphs with a Hamiltonian path
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E. Hamiltonian sc-digraphs

2.25. Conjecture[Rao 1979a]. Every strongly connected sc-digraph has a
Hamiltonian path.

2.26. In the light of this conjecture, the following results are quite interest-
ing:

Theorem[Wojda 1977]. Let D be a self-complementary digraph. Then

A. The underlying graph of D contains a Hamiltonian path.

B. If D has an antimorphism in which all cycles have length at least 4,
then D contains a 2-factor. ¤

2.27. Theorem[Wojda 1977]. Let σ be a permutation with a cycle of length
1 or 2, all other cycles having even length. Then there are sc-digraphs D1,
D2 which both have σ as an antimorphism, but where D1 has a 2-factor and
D2 does not. ¤

Circuits and Hamiltonicity in sc-tournaments

2.28. For the sake of completeness we state some results which apply not
just to sc-tournaments but to all tournaments in general. The best known
is Rédei’s Theorem [312]: every finite tournament has an odd number of
directed Hamiltonian paths, and thus at least one (so Rao’s conjecture above
is at least true for sc-tournaments). Clapham [84] extended this to the infinite
case: if T is a tournament in which every vertex has either finite in-valency
or finite out-valency, then its vertices can be arranged in two 1-way sequences
· · · → v3 → v2 → v1 and w1 → w2 → w3 → · · · (where one of the sequences
may be empty or finite).

A tournament contains a directed Hamiltonian circuit if and only if it
is strongly connected [Camion 1959, Foulkes 1960]. A tournament on at
least 9 vertices that is not strongly connected contains every non-directed
Hamiltonian circuit [Havet 1998]. Every tournament contains every path
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[Havet and Thomassé], with the exception of three sc-tournaments (the 3-
cycle, the regular tournament on 5 vertices and the Paley tournament on 7
vertices) which do not contain antidirected Hamiltonian paths

v1 → v2 ← v3 → · · · ← vn or v1 ← v2 → v3 ← · · · → vn.

The last two results were first proved by Thomason [369] for n ≥ 2128.

2.29. Salvi-Zagaglia [345] has studied directed circuits in sc-tournaments
which are mapped on to their converse by an antimorphism. If σ is an
antimorphism of a sc-tournament, and C [resp. a] is a directed circuit [arc]
such that σ(C) = C ′ [σ(a) = a′], then we say that C [resp. a] is σ-self-con-
verse. The following is easy to prove:

Lemma. If T is a sc-tournament with n = 2k or 2k + 1 vertices, and σ an
antimorphism of order 2, then there are exactly k σ self-converse edges.
A σ-self-converse circuit of odd length must contain exactly one σ-self-con-
verse arc and the fixed vertex of σ (which is impossible for n = 2k); while
a σ-self-converse circuit of even length must contain exactly two σ-self-con-
verse arcs, but not the fixed vertex of σ. ¤

After showing that every sc-tournament must have an antimorphism of
order 2, Salvi-Zagaglia [346] then established a result which parallels Theo-
rem 2.12.

2.30. Theorem. Let T be a regular sc-tournament with antimorphism σ of
order 2 and 2k + 1 vertices. Then every σ-self-converse arc a is contained
in a σ-self-converse circuit of every length l, with the possible exception of
l = 4 and either l = 3 or l = 5. In particular, T must contain at least k
directed Hamiltonian circuits.

Ramsey Numbers

2.31. The traditional Ramsey number R(k, k) is the smallest n such that,
for any graph G on n vertices, either G or G contains a Kk; equivalently, it is
the least n such that any graph G on n vertices must contain either a Kk or
a Kk. It is convenient to define n(k) = R(k, k)− 1 to be the greatest integer
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n for which there is a graph G on n vertices which does not contain a Kk or
a Kk.

Obviously, self-complementary graphs on at least R(k, k) vertices must
contain a Kk. So if we find a sc-graph on n vertices which does not contain
a Kk, we must have R(k, k) > n. It is notoriously difficult to find bounds on
the Ramsey numbers (much less exact values) but sc-graphs can and have
been used with some success in this regard.

We note that the converse approach does not work — just because a sc-
graph on n vertices contains a Kk does not mean that R(k, k) ≤ n. This is
quite easy to show — the P4-join of Kk, Kk, Kk, Kk (see 1.26) contains a K2k

and has just 4k vertices. But maybe if all sc-graphs on n vertices contain a
Kk, then R(k, k) ≤ n. The following conjecture is slightly stronger:

Conjecture[Chvátal, Erdős and Hedrĺın 1972]. Let n∗(k) be the greatest n
for which there exists at least one self-complementary graph on n vertices
which does not contain a Kk. Then n(k) = n∗(k).

Chvátal et al. proved that n∗(st) ≥ (n∗(s) − 1)n(t), and in particular
n∗(2k) ≥ 4n(k). They also noted that the conjecture is true for k = 3 and
4. In fact there is just one graph on n∗(3) vertices which does not contain a
K3 or K3 and this graph is necessarily self-complementary. Kalbfleisch [216]
proved that the same is true for k = 4.

The conjecture is strange, however, because it implies that n(k) ≡ 0 or 1
(mod 4) for all k. We can avoid this anomaly by using the almost self-comple-
mentary graphs [89, 106], which exist if and only if n ≡ 2 or 3 (mod 4). We
note that, while for sc-graphs the statement “G does not contain a Kk or a
Kk” can be abbreviated to “G does not contain a Kk”, this is not true for
almost self-complementary graphs. We sum up all these observations in the
following:

2.32. Problems. Let n∗∗(k) be the greatest n for which there is a self-
complementary or almost self-complementary graph on n vertices which does
not contain either a Kk or a Kk. Are any of the following true?

A. n(k) = n∗∗(k);

B. The only graphs on n∗∗(k) vertices which do not contain a Kk or a Kk

are self-complementary or almost self-complementary;
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C. There is only one graph (up to complementation) on n∗∗(k) vertices
which does not contain a Kk or a Kk — either a unique self-comple-
mentary graph G, or else a unique almost self-complementary graph H
and its complement H.

2.33. We now look at the concrete results obtained by using self-comple-
mentary graphs. It is possible, though, that there are some results on R(k, k)
not noted here which implicitly make use of self-complementary graphs.

Greenwood and Gleason [163] used Paley graphs to prove that R(4, 4) >
17 (in fact, they showed that R(4, 4) = 18). Burling and Reyner [56]
used the same method to show that R(6, 6) > 101 (which was already
known), R(7, 7) > 109, R(8, 8) > 281 and R(9, 9) > 373. Clapham [87]
generalised the Paley graphs, and then used a computer to establish the
known bound R(5, 5) > 41, and the new bound R(7, 7) > 113. Guldan and
Tomasta [166] used Clapham’s construction to show that R(10, 10) > 457
and R(11, 11) > 521, but improved this to R(11, 11) > 541 by an even more
general construction. (See 3.26–3.27).

In one of his earliest and best known papers [113] Erdős proved that
R(k, k) > (1 + o(1)) 1

e
√
2
k2k/2. The proof showed the power of the proba-

bilistic method, and yet there were no known graphs which could be used
to demonstrate this result explicitly. Constructive proofs, even of much
weaker results, were still welcome; among these were the self-complement-
ary graphs used by Rosenfeld [332] to show that R(k, k) > ckln 5/ ln 2, and
Abbott’s [1] family of sc-graphs which showed that R(k, k) ≥ ck ln 41/ ln 4 for
some constant c. Chvátal, Erdős and Hedrĺın [81] also constructed an infi-
nite family of sc-graphs to demonstrate that R(k, k) > 42̇(k−1)/4. The bound

was later improved slightly to R(k, k) > (1 + o(1))
√
2
e
k2k/2, and McDiarmid

and Steger [248] managed to show that this bound could be established by
a family of quasi-random regular self-complementary graphs. Meanwhile
Rodl and Sinajova [328] showed, by a self-complementary construction, that

R(k, k) > 14 (1+o(1)
e
√
2
k2k/2.

2.34. We now see how the results of 2.1 can be generalised. A graph H
is said to have the Ramsey repeated degree property if any graph G, or its
complement, on at least nH vertices must contain a copy of H with two
vertices of equal degree in G, where nH is some constant depending only on
H. In particular, any self-complementary graph on at least nH vertices must
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contain a copy of H with two vertices of the same degree.
The degree spread of a set of vertices X of a graph G is defined to be

∆G(X) = max
x∈X

degG(x)−min
x∈X

degG(x).

The degree spread of a subgraph H of G is just the degree spread of V (H).
With these definitions we can state Albertson and Berman’s [18, 19] re-

sults as follows: the triangle has the Ramsey repeated degree property (where
nK3 = 6); and any sc-graph on at least 6 vertices must contain a triangle of
degree spread at most 5. Albertson and Berman [19] showed that the first
result could not be generalised to other complete graphs, because Kn does
not have the Ramsey repeated degree property for n ≥ 4. However, Erdős,
Chen, Rousseau and Schelp [114] proved that all circuits and all bipartite
graphs have the Ramsey repeated degree property.

They also showed that if we denote the Ramsey number R(k, k) by r,
then any sc-graph on at least 4(r − 1)(r − 2) vertices must contain a Kk

with degree spread at most r − 2. In particular, when k = 3 we see that
any sc-graph on at least 80 vertices contains a triangle of degree spread at
most 4, which improves Albertson and Berman’s result. However, R(k, k)
increases rapidly, so that even for moderate values of k the result is not so
impressive.

Šoltés [353] has shown that every graph H on at most 4 vertices (with
the exception of K1 and K4) has the repeated degree property, and that in
this case nH = R(H), where R(H) is the least n such that any graph (or
its complement) on n vertices contains a copy of H. He conjectured that in
fact, nH = R(H) for all graphs. He also showed that the books Bk have the
repeated degree property, where Bk consists of k triangles with a common
edge.
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Chapter 3

Regular sc-graphs

3.1. Any type of symmetry usually makes a structure more amenable to
study, and more interesting. Self-complementarity is one type of symmetry
which has attracted considerable attention; regularity is another symmetry
which is even more intensely studied. It is therefore natural that regular
self-complementary graphs should prove to be particularly interesting.

In what follows we often consider a graph G to be just a special type of
digraph, obtained by replacing each edge of G by a pair of opposite arcs. For
all digraphs, even those not obtained in this way, “regular” means that every
vertex has both indegree and outdegree equal to some constant r.

There are various special classes of regular digraphs, such as the circulant
and symmetric digraphs, which, under the additional condition of being self-
complementary, fall into two hierarchies which intersect in the Paley digraphs
on a prime number of vertices. Moreover, for digraphs on a prime number
of vertices, one of the hierarchies collapses. These rich interconnections are
displayed in Figure 3.3, and stated formally in 3.11 and 3.17, which are the
keypoints of this chapter.

The presentation of any material, and the order it is presented in, is always
subjective, but even more so in this chapter. A historical presentation, for
example, would give Kotzig’s famous problems [227] centre stage, as they pro-
vided the motivation for much of the work that was done [122, 198, 263, 265,
306, 334, 393]; while the hierarchies we are focusing on emerged piecemeal as
a byproduct of this and other work (mainly by Hong Zhang [407, 408, 409]).
We chose instead to present Kotzig’s problems as a catalyst (which is proba-
bly how they were meant), and the hierarchies as the end result. One reason
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for this is that, up to now, the picture has never been presented as a whole
but only seen in bits and pieces.

3.2. First, some basic results on regular and almost regular sc-graphs, and
pointers to some other results scattered throughout this thesis. An almost
regular graph is one which has exactly two degrees, s and s+ 1, for some s.

A. A regular self-complementary graph G must have 4k + 1 vertices and
degree 2k for some k, and diameter 2. An almost regular sc-graph H
must have 4k vertices, of which half have degree 2k and half 2k − 1,
for some k. Moreover, the regular and almost regular sc-graphs are in
one-one correspondence (see 1.41).

B. Every regular or almost regular sc-graph, apart from P4, is Hamiltonian
(see 2.16).

C. Every antimorphism of a self-complementary graph is also the antimor-
phism of a regular or almost regular sc-graph (see 4.17).

D. The sc-graphs with the least number of triangles, and the least number
of P4’s are just the regular and almost regular sc-graphs (see 2.5–2.6).

See 1.53–1.54 for results on the eigenvalues of regular and circulant self-
complementary graphs; 1.68–1.69 for the chromatic index of rsc-graphs; 4.10
for applications of rsc-graphs to the isomorphism problem; and 7.18 to 7.25
for enumeration of vertex-transitive self-complementary graphs and digraphs.

Two interlocking hierarchies

3.3. We now start working our way towards the first hierarchy. The presen-
tation is necessarily heavy with definitions to introduce the concepts along
the way.

A graph G is vertex-transitive if for any two vertices u, v there is an
automorphism mapping u onto v. It is edge-transitive if, for any two edges
ab, xy, there is either

A. an automorphism α such that α(a) = x, α(b) = y, or

B. an automorphism β such that β(a) = y, β(b) = x.

We say that G is arc-transitive if, for any two edges, both A and B occur.
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A graph which is both vertex- and edge-transitive is said to be symmet-
ric, whereas a graph which vertex- and arc-transitive is said to be strongly
symmetric.

Similar definitions hold for digraphs, except that we can only define arc-
transitive digraphs, not edge-transitive ones; and so we can use the terms
“symmetric digraph” and “strongly symmetric digraph” interchangeably.

3.4. Proposition. A connected edge-transitive graph is either vertex-
transitive or bipartite.

Proof: Let uv be any edge of a connected edge-transitive graph G. All
vertices are incident to some edge, and must thus be in the orbit of u or v.
If the two orbits are identical, G is vertex-transitive. If not, then we cannot
have any edge xy where x and y are in the same orbit, since no automorphism
would map uv onto xy. So G is bipartite. ¤

3.5. Proposition. Let D 6= ~K2 be a connected arc-transitive digraph. Then
D is vertex-transitive.

Proof: IfD has a source v, then there is an arc vw for some w. But since for
any other arc xy there is an automorphism α such that α(v) = x, α(w) = y,

the tail of every arc must be a source. So D = s ~K2 ∪ tK1, that is, s disjoint
copies of ~K2 and t isolated vertices. This is disconnected unless D = K1 or
~K2 (the same argument works if D has a sink). Both are arc-transitive and

self-complementary, but K1 is vertex-transitive while ~K2 is not.

IfD is any other arc-transitive self-complementary graph, any two vertices
a, b, are the tails of some arcs aa′, bb′, and by arc transitivity there is an
automorphism mapping a to b. ¤

3.6. Self-complementary graphs and digraphs are connected, and the only
sc-graph which is bipartite is P4, which is not edge-transitive. (We are not
talking about bipartite self-complementary graphs, which is a different con-
cept altogether). So we have proved that, in Theorem 3.11, A ⇔ C and B
⇔ D.

Zhang [407] used group theoretic arguments to prove that a symmetric
sc-graph must be strongly symmetric, so that conditions A through D are all
equivalent. In [409] he proved the following:
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Lemma. Let D be a symmetric sc-digraph on n vertices. Then

A. if n ≡ 1 (mod 4), D is just a graph, and

B. if n ≡ 3 (mod 4), D is a tournament.

Proof: By arc transitivity either all vertices are joined by arcs in both
directions, or none are. That is, D is either a sc-graph or an oriented sc-
graph, and in the latter case it is a tournament since |E(D)| = n(n−1)

2
.

If n ≡ 3 (mod 4), |E(D)| is odd so D cannot be a graph.

If n ≡ 1 (mod 4), |E(D)| is even, so its automorphism group has even
order, by arc-transitivity and the Orbit-Stabiliser theorem. But the auto-
morphism groups of tournaments have odd order, so the result follows. ¤

Zhang also proved that symmetric sc-digraphs exist if and only if n = pr

for some odd prime p; and, in particular, the only symmetric sc-tournaments
are the Paley tournaments. Sufficiency is proved by the existence of Paley
graphs and tournaments, necessity by his algebraic characterisation of the
symmetric sc-digraphs. (In fact [37, 217], the Paley tournaments are the
only arc-transitive tournaments).

We defer the definition of Paley graphs and tournaments to 3.18, and
Zhang’s characterisation to 3.29, in order not to interrupt the flow of argu-
ments.

In [408] Zhang proved that the only circulant graphs G for which both
G and G are edge-transitive are mKn, Kn,n,...,n, and the Paley graphs on a
prime number of vertices, of which only the latter are self-complementary.
Similar results hold for digraphs.

Chao and Wells [67] showed that if n = p is prime there is a non-null
symmetric digraph of degree r if and only if r|p− 1, and that this digraph is
unique. For r = p−1

2
we get the Paley graph or Paley tournament.

This bevy of remarkable results establishes the statements in the middle
of Theorem 3.11, and we now turn to the task of showing that B ⇔ E ⇒ H
⇔ F.

3.7. Let d(u, v) denote the distance between vertices u and v, and define
Ni(u) := {v|d(u, v) = i}. A connected graph G is distance regular if, for any
two vertices u, v, and any two integers i,j, |Ni(u) ∩Nj(v)| depends only on
d(u, v). Since, irrespective of d(u, v), N(u) = ∪iNi(u) ∩Nj(v), G is regular.
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A graph G is said to be distance transitive if, for any vertices u, v, u′, v′

with d(u, v) = d(u′, v′), there is an automorphism mapping u to v and u′ to
v′. If G is connected it is obviously distance regular, and by considering the
case when d(u, v) = 1 we see that G is arc-transitive. So B ⇐ E ⇒ H.

A strongly regular graph with parameters (n, r, λ, µ) is a regular graph of
order n and degree r, where every pair of adjacent [non-adjacent] vertices has
λ [µ] common neighbours. We abbreviate “strongly regular self-complement-
ary graph” to srsc-graph. It is well-known, and easy to check, that G will also
be strongly regular with parameters (n, n− r− 1, n− 2r+µ− 2, n− 2r+λ).

Lemma. A self-complementary graph is distance transitive if and only if it
is arc-transitive, and distance regular if and only if it is strongly regular.

Proof: We have already seen that all distance-transitive graphs are arc-
transitive. Now, let G be arc-transitive and self-complementary, and let u, v,
u′, v′ be any vertices. If d(u, v) = d(u′, v′) = 1, the required automorphism
exists by arc-transitivity. If d(u, v) = d(u′, v′) > 1 then uv and u′v′ are edges
of G which is also arc-transitive, so there is an automorphism of G (and thus
of G) mapping u to u′ and v to v′.

For a sc-graph G to be either distance regular or strongly regular, it must
at least be regular and thus, by 3.2.A, have diameter 2. But it follows from
the definitions that any graph H of diameter 2 is distance regular if and only
if it is strongly regular. ¤

Results on the properties of strongly regular sc-graphs are given in Propo-
sition 3.32. For now, we will restrict ourselves to the fact that they can only
exist when n is the sum of two squares [351]. We know that they do exist
when n is a prime power [157, 351]; this also follows from the existence of
the Paley graphs and other symmetric sc-graphs.

3.8. For any graph G, and any vertex [edge] v [e], we define t(v) [t(e)] to be
the number of triangles of G containing v [e]. We also define t(v) to be the
number of triangles of G which contain v.

A vertex triangle regular [edge triangle regular] graph is one in which t(v)
[t(e)] is the same for all vertices [edges]. If, moreover, the graph is regular,
then we say that it is strongly vertex triangle regular [strongly edge triangle
regular], or just SETR [SVTR] for short.
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Theorem[Nair 1994, Nair and Vijayakumar 1996]. A graph G is strongly
regular if and only if both G and G are strongly edge triangle regular.

Proof: If G is strongly regular with parameters (n, r, λ, µ) then it is also
SETR with degree r and t(e) = λ, and G is SETR with degree n− r− 1 and
t(e) = n− 2r + µ− 2.

Conversely, let G and G be strongly edge triangle regular with t(e) = t
and t(e) = t, respectively, and let G have degree r. Then G is strongly
regular with parameters (n, r, t, 2r + t− n+ 2). ¤

3.9. So conditions F and G of Theorem 3.11 are equivalent. The previous
theorem also gives an alternative proof of the fact that edge-transitive sc-
graphs are strongly regular. We now show that G ⇒ I ⇔ J. We denote the
set of edges incident to a vertex u by E(u).

Lemma[Nair 1994, Nair and Vijayakumar 1996]. If G is SETR then it is
also SVTR. And if G is SVTR, then so is G.

Proof: If G has degree r and t(e) = t for every edge e then, for any vertex
u, t(u) = 1

2

∑

e∈E(u) t(e) =
1
2
rt.

If G has degree r and t(v) = t′ for any vertex v, then its complement has
degree n−r−1 and, by 2.4.A, t(v) =

(

n−r−1
2

)

− nr
2
+r2− t′ for all vertices. ¤

We note that Nair gave examples of a graph which is vertex triangle
regular but not SVTR, one which is SVTR but not SETR, and a graph
which is SETR but whose complement is not SETR.

3.10. For any graph G we define the set F̂ (G) to be

F̂ (G) := {u ∈ V (G)|t(u) = t(u)}.

Lemma. Let G be a regular sc-graph of order 4k + 1, and σ an arbitrary
antimorphism. Then

A. For any vertex v, t(v) + t(σ(v)) = t(v) + t(v) = 2k(k − 1).

B. F (G) ⊆ F̂ (G) = {u ∈ V (G)|t(u) = k(k − 1)}.

C. F̂ (G) = V (G) if and only if G is strongly vertex triangle regular.
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Proof: Part A follows from 2.4.A. Part B is an obvious consequence. Now
F (G) 6= ∅ ⇒ F̂ (G) 6= ∅ and part C then follows. ¤

A historical note: the set F̂ (G) was originally defined by Kotzig [227] only
for regular self-complementary graphs, with the defining propery given in B
above. Kotzig later communicated the result in part A to Rosenberg [331],
but it was Nair and Vijayakumar [263, 264] who introduced the definition
which we gave here, and which is valid for all graphs. Nair and Vijayakumar
also noted that for all graphs, F̂ (G) = F̂ (G). Kotzig knew that F (G) ⊆ F̂ (G)
for regular self-complementary graphs; with the new definition, this inclusion
is obviously valid for all sc-graphs.

The first hierarchy has now been completely established and we can state
it in full.

3.11. The First Hierarchy. Let G 6= ~K2 be a self-complementary graph
or digraph. Then the following conditions are equivalent:

A. G is edge-transitive

B. G is arc-transitive

C. G is symmetric

D. G is strongly symmetric

E. G is distance transitive

A symmetric sc-digraph D on n vertices exists if and only if n = pr for some
odd prime p; and D is either a graph (whenever n ≡ 1 (mod 4)) or the Paley
tournament (whenever n ≡ 3 (mod 4)).

The Paley digraphs on a prime number p of vertices are the only sym-
metric sc-digraphs on p vertices; they are also the only circulant symmetric
sc-digraphs.

For sc-graphs, either of conditions A, B, C, D, E imply the following
equivalent conditions:

F. G is strongly regular

G. G is strongly edge triangle regular

H. G is distance regular
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and each of these, in turn, implies the following equivalent conditions:

I. G is strongly vertex triangle regular.

J. G is regular and F̂ (G) = V (G).

Strongly regular sc-graphs on n vertices exist when n ≡ 1 (mod 4) is a prime
power; they do not exist when n is not the sum of two squares. ¤

3.12. We now turn to the second hierarchy, much of which is valid for all
graphs and digraphs, not just the self-complementary ones.

If the vertices of a digraphD can be labelled 1, 2, . . . , n so that (1, 2, . . . , n)
is an automorphism of D, we say that D is circulant. Evidently all circulant
graphs are vertex-transitive, but not vice versa. Bridging the gap between
these two classes are the Cayley digraphs.

Let Γ be a group with unit element 1. Let S be a subset of Γ such that

A. 1 6∈ S.

The Cayley digraph Cay(Γ, S) has vertex set Γ and edge set {(g, gs) : g ∈
Γ, s ∈ S}. In other words, there is an arc (a, b) iff a−1b ∈ S. We need
condition A to exclude loops. If we add conditions B or C we get, respectively,
Cayley graphs or connected Cayley digraphs.

B. s ∈ S ⇔ s−1 ∈ S.

C. S generates Γ.

If instead of B we have

B1 s ∈ S ⇔ s−1 6∈ S

we get oriented Cayley graphs, which are tournaments iff |S| = |Γ|−1
2

.
Now circulant digraphs are precisely the Cayley digraphs of cyclic groups,

that is, G is circulant iff G ∼= Cay(Zn, S) for some S ⊆ Zn; S is sometimes
called the symbol. Moreover, all Cayley digraphs are vertex-transitive1, but
not all vertex transitive digraphs are Cayley digraphs. We therefore define a
more general type of digraph.

Let Γ be a finite group, and H ≤ Γ. Let S be a subset of Γ such that

1The left-translation λba−1 : g → ba−1g will map a to b. Note that λba−1 is an isomor-
phism of the digraph Cay(Γ, S) but not a group isomorphism of Γ.
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A’. S ⊆ Γ−H.

The coset digraph Cos(Γ, H, S) has as vertex set the left cosets of H in Γ,
and arc set {(gH, gsH : g ∈ Γ, s ∈ S}. In other words, there is an arc
(aH, bH) iff a−1b ∈ HSH. Equivalently, aH is adjacent to bH iff there are
x ∈ aH, y ∈ bH such that x−1y ∈ S.

As before, condition A’ ensures we get no loops, while adding condition
B’ (or B1 above) or C’ will give us coset graphs (or oriented coset graphs) or
connected coset digraphs.

B’. s ∈ S ⇔ s−1 ∈ S

C’. H ∪ S generates Γ.

Besides, when H = {1} the digraph Cos(Γ, H, S) is just the Cayley digraph
Cay(Γ, S).

3.13. Sabidussi [340] has proved that a digraph G is vertex-transitive if and
only if it is isomorphic to some coset digraph. Thus circulant digraphs are a
subclass of Cayley digraphs, which are in turn a subclass of coset digraphs,
which are just the vertex-transitive digraphs.

If G is vertex-transitive and for any two vertices v, w, there is just one
automorphism α mapping v to w, then G is said to be a Graphical Regular
Representation (or GRR) of its automorphism group. Now if G is also self-
complementary, then there is some antimorphism σ fixing v, and then ασ2 6=
α also maps v to w. So [236] no sc-graph is a GRR.

Turner [373] proved that a digraph on a prime number of vertices is vertex-
transitive if and only if it is circulant — if Aut(D) acts transitively on V (D)
then, by the Orbit-Stabilizer Theorem, n divides |Aut(D)|; if, moreover,
n = p is prime, then Aut(D) must contain an n-cycle, that is, a cyclic
automorphism. (Incidentally, there cannot be non-null disconnected vertex-
transitive digraphs on p vertices, as the order of the components would have
to divide p). So the hierarchy collapses.

3.14. We note that so far we have not made any use of self-complementarity.
When we do add this condition, then we can say a lot more. The equivalence
of conditions A, B, C of 3.17 was established by Rao [306] for self-comple-
mentary graphs, and Robinson’s theorem [324, Thm. 2] allows us to extend
this to sc-digraphs (see 1.34, 1.35 and 5.7).
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Zhang [408] showed that Paley digraphs are the only symmetric circulant
sc-digraphs. Chia and Lim [78] proved that every vertex-transitive (that is,
circulant) sc-digraph on a prime number p of vertices is either a graph or
a tournament. Klin, Liskovets and Pöschel [222] showed, by counting ar-
guments, that when p is a prime congruent to 3 (mod 4), every circulant
sc-digraph on p2 vertices is a tournament. In the light of Zhang’s analo-
gous result for symmetric sc-digraphs [409], it would be interesting to know
whether there are any circulant sc-digraphs that are neither graphs nor tour-
naments.

Alspach [20] gave an elementary proof that every circulant digraph is
self-converse — if (v0, v1, . . . , v2k) is a circulant automorphism of D, then it
can easily be checked that σ : vi 7→ v2k+1−i maps D to D′. In particular,
every circulant tournament is self-complementary, and every vertex-transitive
tournament on a prime number of vertices is both circulant and self-comple-
mentary. Alspach gave an example of a tournament on 21 vertices that is
vertex-transitive but not circulant; however, he showed that it is not self-
complementary either, and this led him to ask whether there are any non-
circulant vertex-transitive sc-tournaments (Problem 3.46.C).

3.15. Now circulant (and thus self-complementary) tournaments exist for all
odd n, but the situation with respect to graphs is very different. Sachs [341]
showed by construction that circulant sc-graphs exist for all n whose prime
divisors are all congruent to 1 (mod 4). He suspected that the converse
was true, and used a detailed investigation of circulant matrices and their
eigenvalues to establish non-existence for

• n = pq, where p and q are two distinct primes, both congruent to 3
(mod 4);

• n = p2s for any integer s, where p is a prime congruent to 3 (mod 4)
(Klin, Liskovets and Pöschel [222] obtained this non-existence result
just for the case n = p2, using counting arguments);

• n = 32p where p is a prime congruent to 1 (mod 4), p > 5.

Sachs’ hunch was proved in full generality by Fronček, Rosa and Širáň [129]
using group- and graph-theoretic techniques. They also showed that in the
case n = pq treated by Sachs, not even Cayley self-complementary graphs
can exist; this is just a special case of a result by Muzychuk (see 3.16).
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Suprunenko [367] constructed a particular class of Cayley sc-graphs using
group automorphisms. A group Γ is reflexible if there is a partition Γ−{1} =
Ω ∪ Ω into two disjoint subsets such that

A. Ω = −Ω and Ω = −Ω

B. there is a group automorphism φ : Γ→ Γ such that φ(Ω) = Ω.

Such an automorphism automatically induces a graph isomorphism from
Cay(Γ,Ω) to Cay(Γ,Γ), so that a reflexible group gives us a Cayley sc-graph.
It is not known whether the converse is true, but Suprunenko characterised
all Abelian reflexible groups, showing that none exist for the case n = pq
mentioned above; of course, this is just a special case of Fronček, Rosa and
Širáň’s result.

If we omit condition A above, we get a semi-reflexible group which gives
rise to a Cayley sc-digraph. If, moreover, Ω = −Ω, we get an anti-reflexible
group, which produces a Cayley sc-tournament.

We note that Figueroa and Giudici [123] also described a group-theoretic
method of constructing vertex-transitive self-complementary graphs, except
that they used transitive permutation groups.

3.16. Zelinka [406] asked whether there are vertex-transitive sc-graphs for
each n ≡ 1 (mod 4), and constructed examples when n is a prime for which 2
is a primitive root of the Galois field GF(n); that is, for any m, 1 ≤ m ≤ n−1

2
,

2m is congruent to neither 1 nor −1 (mod n). Zelinka also constructed infi-
nite vtsc-graphs of countable order and of order the power of the continuum.

Of course, Sachs’ result mentioned above is much more general for the
finite case, as it shows that vertex-transitive (and even circulant) sc-graphs
exist whenever every prime divider of n is congruent to 1 (mod 4). Rao [306]
gave an even better result, which we can adapt to give an alternative proof
of Sachs’ result.

The composition G(H) of two graphs G, H, consists of replacing every
vertex of V (G) by a copy of H, and replacing every edge uv ∈ E(G) by a
bundle of edges joining the two corresponding copies of H. This is just a
special case of the generalised G-join defined in 1.26, and it is easy to see
that if G and H are both self-complementary [or both vertex-transitive], then
G(H) is also self-complementary [or vertex-transitive].

Now the Paley graphs are a well-known family of vertex-transitive self-
complementary graphs, and they exist whenever n = pr ≡ 1 (mod 4), for
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some prime p (see 3.18). Repeated composition of Paley graphs shows their
existence for all multiples of such numbers; Muzychuk [?] showed that they
do not exist for any other values of n.

Theorem[Rao 1985, Muzychuk 1999]. Let pr11 p
r2
2 · · · prss be the prime fac-

tor decomposition of n. There exists a vertex-transitive self-complementary
graph of order n if and only if prii ≡ 1 (mod 4) for every i, 1 ≤ i ≤ s. ¤

This theorem is equivalent to saying that a vertex-transitive sc-graph on
n vertices exists if and only if n is the sum of two squares [57, Ex. 6.34]. We
also know that strongly regular sc-graphs can only exist for these values of
n [351], and apparently not even all of them, though they do exist when n is
a prime power.

We can use a very similar method to establish Sachs’ result on circulant
graphs. The Paley graphs on a prime number of vertices are circulant. Now
it is not difficult to see that if G and H are both circulant, then so is G(H).
For let (v1v2 . . . vm) and (w1w2 . . . wn) be circulant automorphisms of G and
H respectively; then

((v1, w1) . . . (vm, w1)(v1, w2) . . . (vm, w2)(v1, w3) · · · (v1, wn) . . . (vm, wn))

is a circulant automorphism of G(H). So if n = pr11 p
r2
2 · · · prss , where each pi

is a prime congruent to 1 (mod 4), then the composition of r1 P (p1)’s, r2
P (p2)’s and so on (in any order) gives us a circulant sc-graph on n vertices.

3.17. The Second Hierarchy. Every circulant digraph is a self-converse
Cayley digraph, which in turn is a vertex-transitive (or coset) digraph. If
G is a self-complementary graph or digraph, then it is not a GRR and the
following are equivalent:

A. G is vertex-transitive.

B. F (G) = V (G).

C. N(G) = E(G).

For digraphs D on a prime number p of vertices this hierarchy collapses and,
moreover, consists just of graphs and tournaments (the vertex-transitive sc-
graphs and all vertex-transitive tournaments). On p2 vertices (where p is
prime, p ≡ 3 (mod 4)) every circulant sc-digraph is a tournament.
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Circulant sc-tournaments are just the circulant tournaments, which exist
for all odd n.

Circulant self-complementary graphs exist if and only every if every prime
divisor of n is congruent to 1 (mod 4).

The only symmetric circulant sc-digraphs are the Paley graphs and Paley
tournaments on a prime number of vertices.

Vertex-transitive sc-graphs exist if and only if n is the sum of two squares,
while infinite vtsc-graphs exist if n is countably infinite or of order the power
of the continuum. ¤

Paley digraphs and generalisations

3.18. Let p be an odd prime, r an integer, and GF(pr) be the finite field with
pr elements, with additive and multiplicative groups F+ and F ∗, respectively.
It is well known that F ∗ is a cyclic group, say

F ∗ = {x, x2, x3, . . . , xpr−1 = 1}

for some generator x. Let H be the subgroup {x2, x4, . . . , xpr−1 = 1} of index
2, also known as the subgroup of quadratic residues modulo pr. Then [276]
the Paley digraph P (pr) is the Cayley digraph Cay(F+, H), that is,

A. V (P (pr)) = {0, 1, 2, . . . , pr − 1}.

B. E(P (pr)) = {(a, b) : b− a = x2s for some s.

The Paley digraph has no loops because the unit element of F+ is 0,
which is not in H. The fact that 1 ∈ H generates F+ tells us that P (pr) is
connected.

Moreover, since −1 = x
pr−1
2 is a quadratic residue if and only if pr ≡ 1

(mod 4), the Paley digraph is a graph whenever pr ≡ 1 (mod 4), and a
tournament whenever pr ≡ 3 (mod 4).

The directed 3-circuit is the smallest Paley tournament, while the pen-
tagon is the smallest Paley graph.

3.19. Theorem. The Paley digraph P (pr) is self-complementary and sym-
metric.
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Proof: Since P (pr) is a Cayley graph it is vertex-transitive.
Multiplying the elements of F by x2s ∈ H, or adding any element g ∈ F

are both automorphisms of P (pr). Now if (g, g+x2s) and (h, h+x2t) are any
two arcs of the Paley digraphs, we can add −g, multiply by x2t−2s and adding
h to map the first arc onto the second. So P (pr) is arc-transitive. (In fact,
the Paley tournaments are the only arc-transitive tournaments [37, 217]).

The mapping θ : xr 7→ xr+1 is a group automorphism of F+, and so maps
P (pr) = Cay(F+, H) onto Cay(F+, F

∗ −H) = P (pr). ¤

3.20. Carlitz [62] found the automorphism group of Paley graphs, while
Goldberg [158] and Berggren [37] characterised the automorphism group of
Paley tournaments.

Theorem. The Paley digraphs’ automorphism group is

A(P (pr)) = {φ : a 7→ x2α(a) + y, where α is a field automorphism of

GF(pr), x, y ∈ GF(pr), x 6= 0}.¤

3.21. Alspach [21] showed that when r = 1, we can just take α to be the
identity map. In fact, he found the automorphism group of all non-trivial (i.e.
non-null and non-complete) vertex-transitive digraphs on a prime number p
of vertices:

A(Cay(Zp, S)) = {φ : a 7→ xa+ c|x ∈ H(S), c ∈ Zp}.

where H(S) ≤ Z∗p is the largest subgroup of Z∗p such that S is a union of
cosets of H(S); if Cay(Zp, S) is a graph, then we also stipulate that H(S)
must have even order. Finally, Alspach showed that the [graph] Cay(Zp, S)
is symmetric if and only if S = H(S), that is, S is a coset of some [even
order] subgroup of Z∗p .

3.22. Chao and Wells [67] showed that the automorphism group of a non-
trivial vertex-transitive digraph on a prime number p of vertices is either a
cyclic group of order p, or a Frobenius group. Those with a cyclic automor-
phism group are called strongly vertex-transitive digraphs, which should not
be confused with the concept of strongly symmetric digraphs.
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So, for some α, k, A(Cay(Zp, S)) can be expressed as Γα,k := 〈R, σ〉 with
the defining relations

Rp = 1, σα = 1, σ−1Rσ = Rk, where α|p− 1 and kα ≡ 1 (mod p).

When α = 1 we get the cyclic groups, when α > 1 the Frobenius groups.
Further, the (out)degree of the (di)graph, that is |S|, is a multiple of α; when
Cay(Zp, S) is symmetric, the degree is exactly α. The groups with odd α
correspond to tournaments, while those with even α correspond to graphs.

3.23. The Paley digraphs on a prime number of vertices have a number
of further special properties. First of all, the group F+ is then a cyclic
group, so that P (p) is circulant. In fact there are no other circulant symmet-
ric sc-digraphs at all [Zhang 1996a] and, on p vertices, no other symmetric
sc-digraphs [Chao and Wells 1973]. Chao and Wells noted that every vertex-
transitive digraph on p vertices is a union of directed Hamiltonian circuits.
This brings us to an alternative definition of P (p), in a short note by Nord-
haus [273] which we quote verbatim:

Let p denote a prime of the form 4n + 1 and define row i to
have the p elements (1, 1 + i, 1 + 2i, . . . , 1 + (p− 1)i), each taken
modulo p, where i = 1, 2, . . . , r and r = 2n. Any n of these rows
provide n edges disjoint hamiltonian circuits for a clock graph
with p vertices labelled 1, 2, . . . , p when successive elements in a
row cyclically define end-points of an edge. The remaining n rows
define the complementary graph, and these graphs are isomorphic
when the values of i for the n rows selected are quadratic residues
of p. Such graphs are examples of graphs of constant link.

By “constant link” he probably meant that the neighbourhoods of any
two vertices induce isomorphic subgraphs (see [50]); this obviously follows
from vertex-transitivity.

3.24. Paley digraphs are known to have a number of other properties:

A. When p ≡ 3 (mod 4) and p > k222k−2, for any k vertices of the Paley
tournament P (p) there is another vertex which dominates them all.
[Graham and Spencer 1971]
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B. When p ≡ 1 (mod 4) and p > k224k, for any 2k vertices of the Paley
graph P (p) there is another vertex adjacent to the first k but not to
the last k. [Blass, Exoo and Harary 1981]

C. For any prime p and any integer r, Menger’s theorems can be used to
show that P (pr) has vertex-connectivity pr−1

2
. [Rao 1979a]

D. The Shannon zero-error capacity C(G) of a vertex-transitive sc-graph
G on n vertices is exactly

√
n. In particular C(P (pr) = pr/2. [Lovász

1979]

E. By arc-transitivity, any n− 2 sub-tournaments of a Paley tournament
are isomorphic, whereas any n− 2 subgraphs of a Paley graph can be
one of two types.

The lower bounds of A and B are by no means the best possible — see 4.33
for a discussion and application. Rao conjectured that in fact there is a
vertex-transitive sc-graph of order 4k+1 and vertex-connectivity 2k for any
k.

3.25. Paley graphs have also been used in a topological context. White [382]
defined what he called strongly symmetrical maps; roughly speaking, these
are self-dual embeddings (in some surface) of self-complementary graphs, in
which the automorphisms of the map and graph commute with the graph
antimorphisms. White showed that sc-graphs with strongly symmetrical
maps must be edge-transitive, and thus strongly symmetric by 3.11. He
also showed that strongly symmetrical maps on n vertices exist if and only
if n ≡ 1 (mod 8), using the Paley graphs to establish sufficiency. We refer
to White’s paper for a more detailed discussion and several other results.

3.26. Paley digraphs on a prime number of vertices have been used to
find lower bounds on the diagonal Ramsey numbers — specifically R(4, 4) >
17 [163]; R(6, 6) > 101 (which was already known), R(7, 7) > 109, R(8, 8) >
281 and R(9, 9) > 373 [56]. Clapham [87] generalised the Paley graphs to
establish the known bound R(5, 5) > 41, and the new bound R(7, 7) > 113.

Like the Paley graphs, Clapham’s graphs are Cayley graphs Cay(F+, S)
of the additive group of the field F with p = 4k + 1 elements. As usual,
F ∗ is the (cyclic) multiplicative group of F generated, say, by x. We take
any integer r which divides k, let H be the subgroup generated by x2r, and
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define S to be the set H ∪ xH ∪ . . . ∪ xr−1H. That is,

S := {1, x, . . . , xr−1, x2r, x2r+1, . . . , x3r−1, x4r, x4r+1, . . . , x5r−1, . . .}.

Cay(F+, S) is circulant by virtue of being a Cayley digraph of a cyclic
group; it is loopless because 0 6∈ S, connected because 1 = x4k ∈ S, and
it is a graph because −1 = x2k ∈ S. It is also self-complementary because
σ : i 7→ xri is an antimorphism (with 0 as fixed point and all other cycles
having length 4k

r
). For r = 1 we get the Paley graphs. For r 6= 1 we get graphs

that are vertex-transitive but, by Zhang’s result [408], are not arc-transitive.

Evidently we can extend the definition to primes congruent to 3 (mod 4)
(which gives us tournaments) and to any odd prime power (which gives us
graphs or tournaments that are not circulant).

3.27. Guldan and Tomasta [166] used Clapham’s construction to show that
R(10, 10) > 457 and R(11, 11) > 521, but improved this to R(11, 11) > 541
by an even more general construction. Define w := (w1, w2, . . . , wr−1) where
wk is either 0 or r. Then

S := H ∪ x1+w1H ∪ x2+w2H ∪ . . . ∪ xr−1+wr−1H.

As usual, 0 is not in S, but 1 and −1 are so Cay(F+, S) is a connected
circulant (but, in general, not arc-transitive) graph. When w = (0, . . . , 0)
we get Clapham’s graphs, and the antimorphism σ : i 7→ xri works in the
general case too. As above, the definition can be extended to any odd prime
power.

3.28. Kocay [224] used the Galois field with pr elements to construct a fam-
ily of vertex-transitive self-complementary 3-uniform hypergraphs. He also
constructed strongly symmetric self-complementary 3-uniform hypergraphs
G∗ which subsume the Paley graphs. That is to say, for any vertex v, if
Ev := {{v, w, z} ∈ E(G∗} is the set of hyperedges containing v, then the
edges {wz|{v, w, z} ∈ Ev} define a graph that is isomorphic to P (pr).
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Characterisation of some vertex-transitive

sc-digraphs

3.29. Vertex-transitive digraphs, as mentioned above, are just coset di-
graphs. There is, so far, no characterisation of the vertex-transitive self-
complementary digraphs, but there are two special cases where we can ob-
tain a suitable algebraic characterisation. Zhang [409] gave the following
characterisation of symmetric sc-digraphs.

Theorem. A digraph is symmetric and self-complementary if and only if it
is isomorphic to a Cayley digraph Cay(V+, OH) where

A. V+ is the additive group of the vector space V of dimension r over the
finite field with p elements, where p is an odd prime.

B. OH is an orbit of a group H, H ⊂ H ⊂ GL(V ), [H : H] = 2, H is
transitive on V − {0} but H is not transitive on V − {0}. ¤

As noted in 3.6, when pr ≡ 1 (mod 4) we get the symmetric sc-graphs
and, when pr ≡ 3 (mod 4), the Paley tournament. Moreover, if we also
require that the sc-digraphs be circulant, we are left with only the Paley
graphs and tournaments.

3.30. The second case where we have complete information is when the
vertex-transitive sc-digraph has a prime number p of vertices. Turner showed
that any vertex-transitive digraph on p vertices must be circulant [373]. He
also gave the following result:

Theorem. Two circulant graphs Cay(Zp, H) and Cay(Zp, H
′) on a prime

number p of vertices are isomorphic if and only if H ′ = aH for some integer
a co-prime to p.

This has been generalised to prime order digraphs [67, 111], and also [261,
262] to digraphs on n = εp1p2 · · · ps vertices, where the pi’s are pairwise
distinct odd primes and ε ∈ {1, 2, 4}; it is false for all other n ≥ 18 [277].

So, for all these values of n, a circulant digraph Cay(Zn, H) is self-comple-
mentary if and only if there exists an integer a co-prime to n such that

aH = Zn − {0} −H.
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The prime order case was first pointed out by Ruiz [333] and then treated
in more detail by Chia and Lim [78]. We first note that the multiplicative
group Z∗p is cyclic, and any subgroup A of even order 2ω is also cyclic and
will thus have a unique subgroup A1 of order ω; we let A2 := A−A1. Every
coset xA can be split similarly into xA1 and xA2.

3.31. Theorem[Chia and Lim 1986]. Let D = Cay(Zp, S) be a vertex-
transitive digraph on an odd prime number p of vertices. Then D is self-
complementary if and only if, for each even order subgroup A ≤ Z∗p , and for
each coset xA,

either H ∩ xA = xA1 or H ∩ xA = xA2.

Strongly regular sc-graphs

3.32. So far we have only discussed strongly regular sc-graphs (srsc-graphs)
to find out where they fit in the first hierarchy. We now take a look at some
of their properties, starting with their parameters.

Proposition[Seidel 1976]. A strongly regular sc-graph G has parameters

(4k + 1, 2k, k − 1, k), for some k; and eigenvalues 2k, −1−
√
4k+1
2

, −1+
√
4k+1
2

,
with multiplicities 1, 2k, 2k, respectively.

Proof: By 3.2.A, G must have 4k + 1 vertices and degree 2k. Now take
a vertex v ∈ F (G), and consider some antimorphism σ which fixes v. We
define A to be the set of neighbours of v, and B = V (G) − A − v. Notice
that σ(A) = B, σ(B) = A and |A| = |B| = 2k. Since G is strongly regular,
µ · 2k = |E[A,B]| = 2k2, and therefore µ = k. Finally, if v and w are any
two adjacent vertices, with λ common neighbours and degree 2k, then in G,
v and w will be non-adjacent and have k common neighbours, λ common
non-neighbours and degree 2k. Thus λ = k − 1.

The eigenvalues and multiplicities of a strongly regular graph can be de-
rived directly from the parameters (n, ρ, λ, µ) using standard formulas for
which we refer to Biggs [42, p. 20]. ¤
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Curiously [26], every strongly regular Cayley graph (even those which are
not self-complementary) based on an abelian group and with λ − µ = −1
must also have parameters (4k + 1, 2k, k − 1, k), with the exception of some
graphs with parameters (243, 22, 1, 2) and their complements.

For srsc-graphs, we can say a bit more.

3.33. Lemma[Kotzig2]. For a regular sc-graph on 4k + 1 vertices, the
following conditions are equivalent

A. G is strongly regular,

B. each edge is on exactly k − 1 triangles,

C. each pair of non-adjacent vertices has exactly k common neighbours.

Proof: That A implies B and C follows from Proposition 3.32, while B ⇒
A follows from 3.8, and it is easy to check that C implies B. ¤

3.34. Seidel [351] showed that srsc-graphs on n vertices can only exist when
n is a sum of two squares; and that their adjacency matrix A must satisfy

A2 = k(J + I)− A, AJ = 2kJ.

Mathon [247] remarked that these conditions are necessary but not sufficient;
however, he did not give any particular examples.

The fact that srsc-graphs do exist when n is a prime power was known
as early as 1967 [157, 351]; it also follows from the existence of symmetric
sc-graphs, which we know are all strongly regular.

Up to n = 29 the only strongly regular sc-graphs are the Paley graphs.
Non-Paley examples are difficult to find, but a few were found for n = 37,
41 and 49 [58]; see also [211].

Liu [239] also tackled these issues, but his results — srsc-graphs exist for
certain primes, and the srsc-graph of order 13 is unique — do not cover any
new ground.

3.35. Rosenberg [331] made a detailed study of self-complementary graphs
using boolean techniques. He obtained a description of the sc-graphs on 4k+1
vertices in terms of certain 0−1 parameters, and found the constraints these

2Communicated to Rosenberg [331]
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parameters must satisfy for the graph to be regular or strongly regular. The
systematic generation of srsc-graphs is thus reduced to the solution of certain
integer equations. However, this is nowhere near as convenient as having an
explicit counting formula, something which still remains elusive.

Mathon made a similar attempt in [247] to count the strongly regular
self-complementary graphs on up to 49 vertices. He first tried to restrict the
search for srsc-graphs as far as possible, and then generated them systemat-
ically, providing a wealth of information about their structure, such as the
sizes of their orbits, cycle structures of their antimorphisms, and number of
K4’s, K5’s, K6’s and K7’s.

We give the numbers of non-isomorphic srsc-graphs in Table 3.1. As
noted previously, there is only one graph for each feasible order up to n = 29,
namely, the Paley graph of order n. The next Paley graph is on 49 vertices, so
all the others are non-Paley. We note that many of these graphs, especially on
45 vertices, have very small automorphism groups (sometimes just of size 2),
while others, especially the Paley graphs, have hundreds of automorphisms.

n 5 9 13 17 25 29 37 41 45 49
srn 1 1 1 1 1 1 2 4 22 5

Table 3.1: Strongly regular sc-graphs on n vertices

Mathon also made a list of open problems:

A. Can a srsc-graph on n = 8k+1 vertices have an antimorphism of order
4. (Up to n = 49, none do).

B. Can a srsc-graph on n vertices, n a prime power, have an antimorphism
whose non-trivial cycles have equal length. The only examples up to
49 vertices are for n = 45, which is not a prime power.

C. Do there exist srsc-graphs on n = m2 vertices which belong to a switch-
ing class of a Steiner system? All known examples are of Latin type.

D. Find infinite families of srsc-graphs on non-Paley type. In particular,
are there any srsc-graphs at all for n = 65 and n = 85? [Mathon 1978]

3.36. One of the restrictions which Mathon found has to do with the cycle
structures of the antimorphisms. Recall that every antimorphism (with n =
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4k + 1 vertices) is the antimorphism of some regular sc-graph. If we add
the condition of strong regularity, then this is no longer true, and not only
because n must be the sum of two squares.

For every σ of order 2s(2t + 1), τ := σ2t+1 is an antimorphism of order
2s with one cycle of length 1, the rest having lengths 2l1 , . . . , 2lω , where
l1 ≥ · · · ≥ lω ≥ 2. We call τ a basic antimorphism, and represent its cycle
lengths by the vector l(τ) = (l1, . . . , lω).

Theorem[Mathon 1988]. Let G be a srsc-graph on 4k + 1 vertices with a
basic complementing permutation τ , where l(τ) = (l1, . . . , lω). If l1 = · · · =
lγ = c > lγ+1 for some 1 ≤ γ < ω, then

k ≤ 2c−1ω − 1.

If, moreover, two of the exponents lα differ by more than 1, that is c− lδ ≥ 2
for some δ > γ, then

k ≤ min
γ≤t<ω

{ρt − dρt(υt − 1)/(2υt − 1)e},

where

υt = 2c−lt−1 and ρt = 2c−1γ +
t−1
∑

i+1

2li−1.¤

Kotzig’s problems

3.37. We finally come to Kotzig’s problems [227, Problems 2–7]. These were
originally stated as follows:

For a self-complementary graph G define the three sets

F (G) := {u ∈ V (G)|∃σ ∈ A(G), σ(u) = u},
F̂ (G) := {u ∈ V (G)|t(u) = k(k − 1)} (where G is regular), and

N(G) := {uv ∈ E(G)|∃σ ∈ A(G), σ(u) = v}.

A. Is it true that every regular self-complementary graph has an antimor-
phism where all cycles are of length 4, except for a single fixed vertex?
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B. Characterise the set F (G) of a regular sc-graph G. Is it true that
F (G) = F̂ (G) for a regular sc-graph G?

C. Characterise the set N(G) for a sc-graph G.

D. Is is true that a regular sc-graph G is strongly regular iff F (G) = V (G)
and N(G) = E(G)?

E. Is it true that a strongly regular sc-graph on n = 4k+1 vertices exists
whenever n is a sum of two squares? What is the smallest integer k
for which there are at least two non-isomorphic srsc-graphs with 4k+1
vertices?

Before stating the last problem we need some terminology. Let Rk denote
the set of all regular sc-graphs with 4k+1 vertices, let µ(G) be the maximal
number of mutually edge-disjoint Hamiltonian cycles of G, and define

µ(k) = min
G∈Rk
{µ(G)}.

Clearly µ(k) ≤ k, and it has been proved [212] that µ(k) ≥
⌊

k
3

⌋

. Kotzig
stated that

• a construction of rsc-graphs with µ(G) = k was known for every natural
number k (see 3.23 for the case where k is prime),

• µ(1) = 1 and µ(2) = 2, but µ(3) was unknown, and

• there was no known example of a graph G ∈ Rk with µ(G) < k.

His last problem was:

F. Find exact values of µ(k) for small k > 2.

3.38. We have seen (3.10) that the definition of F̂ (G) can be extended to
cover any graph G, even if it is not regular or self-complementary:

F̂ (G) = {u ∈ V (G)|t(u) = t(u)}.

With this definition it is evident that

F (G) = F (G) ⊆ F̂ (G) = F̂ (G).

86



By the time Kotzig posed his problems, F (G) had already been charac-
terised for graphs by Robinson [321] as the unique odd orbit of G; he later
showed [324] that for any self-complementary digraph, F (G) is the unique
orbit fixed by any and every antimorphism. Rao proved as much, and more,
in [306], showing how every antimorphism induces an involution on the orbits
of G and thus characterising N(G) (see 1.34). When combined with Robin-
son’s second result, this can be extended to sc-digraphs (see 5.7), although
F (G) need not be the unique odd orbit in the general case.

The first part of problem E is listed as an open question in 3.35, while
the answer to the second part (see Table 3.1) is k = 9. We do not know of
any progress on problem F.

Using Nair, Vijayakumar and Rao’s results, and calling the one cycle
(if any) of an antimorphism the trivial cycle, we can restate the remaining
questions as follows:

A. Is it true that every regular self-complementary graph has an antimor-
phism where all non-trivial cycles are of length 4?

B. Is it true that F (G) = F̂ (G) for every regular sc-graph G?

D. Is is true that a regular sc-graph G is strongly regular iff it is vertex-
transitive?

It turns out that the answer to all three is ’No’, but the construction of
counter-examples is not an easy matter.

3.39. We will tackle these problems in reverse order, the last one being
easiest. The first counterexample to problem D was given by Ruiz [336], who
noted that there are exactly two vertex-transitive self-complementary graphs
with 13 vertices — the Paley graph, and the circulant graph Cay(Z13, {1, 3, 6,
7,10, 12}). The latter, shown in Figure 3.2 is a counterexample to Kotzig’s
problem.

We saw in 3.16 how Rao [306] used the composition of Paley graphs to
construct vertex-transitive sc-graphs. He used the same method to give an
infinite family of counterexamples to problem D. First he characterised the
connected strongly regular compositions:

Lemma. The graph G(H) is connected and strongly regular if and only if

A. G and H are both complete graphs, or
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Figure 3.2: Cay(Z13, {1, 3, 6, 7, 10, 12})

B. G is complete and H is complete multipartite, or

C. G is complete and H is a null graph, or

D. G is complete multipartite and H is a null graph. ¤

So the composition of two or more vertex-transitive sc-graphs is a coun-
terexample to problem D. Using Paley graphs, we can construct such coun-
terexamples for all n which can be expressed as pr11 . . . p

rs
s , where p1, . . . , ps,

is a list of at least two primes (not necessarily distinct) and prii ≡ 1 (mod 4)
for all i. Equivalently, n is a sum of two squares but not a prime power.

Both vertex-transitive and strongly regular sc-graphs exist only if n is the
sum of two squares. For vertex-transitive sc-graphs the converse is true 3.16,
but for strongly-regular sc-graphs the question is still open. If there are any
n of the form a2 + b2 for which no srsc-graphs exist, the vtsc-graphs on n
vertices would automatically be counterexample s.

We could also ask for strongly regular sc-graphs which are not vertex-
transitive, but so far no examples have been found.
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3.40. Rao [306] also claimed to have constructed an infinite family of coun-
terexamples to question B, one for each feasible order n ≥ 9. But Nair and
Vijayakumar [263, 265] pointed out that the construction only works when
n = 9; for the sake of this discussion we will denote Rao’s graph by G9 (Fig-
ure 3.3). They constructed an infinite family of counterexamples, although
ironically their original proof was faulty.

Figure 3.3: G9

Since F (G) = V (G) if and only if G is vertex-transitive; and, when
G is regular, F̂ (G) = V (G) if and only if G is strongly vertex triangle
regular (SVTR), we have something to go by when looking for counterex-
amples — any sc-graph that is strongly vertex triangle regular, but not
vertex-transitive, will do. It turns out that G9 is such a graph, that is
|F̂ (G9)| = 9 > |F (G9)|; in fact, |F (G9| = 1.

Nair and Vijayakumar constructed two other graphs satisfying this cri-
terion, G17 on 17 vertices and G33 on 33. Essentially they took a copy of
a circulant graph on 8 or 16 vertices, and a copy of its complement, joined
them together in a particular way, and then added another vertex. They
suggested that it might be possible to extended this method to any larger
n = 2k + 1.

One would like to be able to compose these graphs (that is, G9, G17 and
G33) to obtain larger and larger counterexamples, but it is not clear that this
can be done. Nair and Vijayakumar did prove that if G and H are any two
graphs, and G(H) their composition (obtained by replacing every vertex of
G by a copy of H, and every edge by a corresponding bundle of all possible
edges, as in refintrod-26), then

A. if G and H are both SVTR, then so is G(H).

It can also easily be checked (c.f. 1.26) that

B. if G and H are both self-complementary, then so is G(H).
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The stumbling block is vertex-transitivity. Obviously

C. if G and H are vertex-transitive, then so is G(H).

Nair and Vijayakumar apparently assumed a partial converse — that if
neither G nor H is vertex-transitive, then G(H) is not — so that composing
any number of G9’s, G17’s and G33’s in any order would give us counterex-
amples. While it seems plausible, they offered no proof. However, after some
correspondence with the author this was proved for certain cases.

3.41. Theorem. Let G and H be regular self-complementary graphs. Let
N(u), N(x) and N(u, x) be the neighbourhoods of u ∈ V (G), x ∈ V (H) and
(u, x) ∈ G(H). Then

A. If for some u, v ∈ V (G), the degree sequences of N(u) and N(v) are
different, then N(u, x) and N(v, x) will also have different degree se-
quences.

B. If for some x, y ∈ V (H), the degree sequences of N(x) and N(y) are
different, then N(u, x) and N(u, y) will also have different degree se-
quences.

C. If for some x, y ∈ V (H), N(x) 6∼= N(y), then N(u, x) 6∼= N(u, y).

Proof: Let G,H have degrees dG, dH , and orders nG, nH respectively.
The neighbourhood N(u, x) of (u, x) consists of a copy of N(x), with

every vertex joined to all the vertices of a copy of N(u)(H). There are dH
vertices in N(x), and dG copies of H in N(u)(H).

Thus a vertex (u, z) in N(u,x), where z ∈ N(x), is adjacent to

• dN(x)(z) vertices in the copy of N(x), and

• nH vertices in each of the dG copies of H.

So denoting the degree of (u, z) in N(u, x) by d′(u, z), we have

d′(u, z) = dN(x)(z) + dGnH .

A vertex (w, h) in N(u,x), where w ∈ N(u), h ∈ V (H), is adjacent to

• the dH vertices of the copy of N(x),
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• dH vertices of the form (w, h′), where h ∼ h′ in H, and

• nH vertices in each of dN(u)(w) copies of H.

The total degree of (w, h) in N(u, x) is thus

d′(w, h) = 2dH + dN(u)(w) · nH .

Parts A and B can now be seen to be true. To establish the last part we
note that 2dH = nH − 1, so that

d′(w, h) < [dN(u)(w) + 1] · nH ≤ dGnH < d′(u, z).

Similar considerations hold for the degree of any vertex (u, z ′) in N(u, y).
Thus, any isomorphism of N(u, x) onto N(v, x) must induce an isomorphism
of N(x) onto N(y) to preserve the degrees. But this is impossible if N(x) 6∼=
N(y). ¤

3.42. Now G9, G17 and G33 all contain vertices whose neighbourhoods are
non-isomorphic, or even have different degree sequences, so we can compose
them with each other, and with any other SVTRSC graph to obtain coun-
terexamples to Kotzig’s conjecture. Using previous results on the existence
of circulant sc-graphs we can thus state:

Theorem. There are strongly vertex triangle regular self-complementary
graphs which are not vertex-transitive, of order n, for all n = 9α17β33γN ,
where at least one of α, β, γ is not zero, and N is a sum of two squares. ¤

We note as an aside that Ruiz [338] showed that, for all k > 1, there
are graphs on 4k + 1 vertices which are regular and self-complementary but
not vertex-transitive. His example was the C5-join of (Kk, Kk, K1, Kk, Kk).
In fact |F (G)| = 1 for these graphs, since the central K1 is the only vertex
which is in just two cliques. However, they will not do as counterexamples
to Kotzig’s problem B since |F̂ (G)| = 1 as well.

Antimorphisms with unequal cycle lengths

3.43. Hartsfield [198] gave a single counterexample to question A. (Xu [393]
later produced a counterexample too). Hartsfield’s graph H (see Figure 3.4)
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has 13 vertices and four antimorphisms, which all have a 1-cycle, a 4-cycle
and an 8-cycle:

σ = (1)(2 3 4 5)(6 7 8 9 10 11 12 13)

σ3 = (1)(2 5 4 3)(6 9 12 7 10 13 8 11)

σ5 = (1)(2 3 4 5)(6 11 8 13 10 7 12 9)

σ7 = (1)(2 5 4 3)(6 13 12 11 10 9 8 7).

5

6

7

4

8

12

3

10

9

1
2

11 13

Figure 3.4: Hartsfield’s graph

Its automorphism group, in fact, is the following:

σ2 = (1)(2 4)(3 5)(6 8 10 12)(7 9 11 13)

σ4 = (1)(2)(3)(4)(5)(6 10)(7 11)(8 12)(9 13)

σ6 = (1)(2 4)(3 5)(6 8 10 12)(7 9 11 13)

σ8 = id.

We note that the vertex 1 is the only fixed vertex of H, and its neigh-
bourhood is N = {2, 4, 6, 8, 10, 12}. We define N := {3, 5, 7, 9, 11, 13}.
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3.44. What if we broaden the scope of Kotzig’s problem to “Is it true
that every self-complementary graph on n vertices has an antimorphism with
non-trivial cycles of equal length?”. This is trivially true for n ≤ 9, but
Hartsfield’s graph shows that it is not true when n = 13.

If we remove the vertex 1 we get a counterexample of order 12. To see
this, note that any antimorphism of H−{1} must exchange the vertices of N
and N because they have distinct degrees. So the antimorphisms of H −{1}
can be extended to an antimorphism of H and, thus, must have cycles of
length 4 and 8.

Now, if J is any counterexample of order n, we can add a P4 to give a
sc-graph with end-vertices as in 1.13. Any antimorphism of this new graph
J ′ with n + 4 vertices must map the P4 to itself and J onto itself; so it too
will contain cycles of unequal lengths. In this manner we obtain an infinite
family of counterexamples for each feasible n:

Proposition. There is a sc-graph on n vertices whose antimorphisms all
have non-trivial cycles of unequal length (specifically, at least one cycle of
length 4 and at least one of length 8) if and only if n ≡ 0 or 1 (mod 4),
n ≥ 12. ¤

3.45. Apart from Hartsfield’s graph, the graphs we constructed are not
regular, so they are not counterexamples to Kotzig’s problem. With a little
work, however, we can use Hartsfield’s graph (or any other counterexample,
if one is found) as the basis for an infinite family of counterexamples on
n = 13+ 8k vertices, as follows. Our construction is loosely based on one by
Colbourn and Colbourn [94].

A clique is a complete subgraph which is not included in a larger complete
subgraph. A maximal independent set is just the complement of a clique —
an independent set not included in any larger independent set; for conve-
nience we abbreviate this to maxiset. It can be checked that a largest clique
of H has size 4, and thus a largest maxiset of H also has size 4.

For any natural number k, we construct H(k) as follows (see Figure 3.5
for a sketch). We add two K2k’s and two K2k’s. In each of these four graphs,
the first k vertices are joined to every vertex of N , the last k vertices are
joined to every vertex of N . Every vertex of the K2k’s is also joined to the
vertex 1. Finally, every vertex of each K2k is joined to every vertex of the
other K2k, and every vertex of one of the K2k’s.

This graph is regular of degree 4k+6 and self-complementary. For k ≥ 3,
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Figure 3.5: H(k)

the following facts can also be checked (the cliques of H itself get in the way
for k = 1 or 2):

• the vertex 1 is included in exactly two cliques of size 2k + 1 which
intersect in the vertex 1, and exactly two maxisets of size 2k + 1

• each vertex in the K2k’s which we added is contained in 2k + 1 cliques
of size 2k + 1, and one maxiset of size 2k + 1;

• each vertex in the K2k’s which we added is contained in 2k+1 maxisets
of size 2k + 1, and one clique of size 2k + 1;

• the vertices of N and N are not contained in any cliques or maxisets
of size 2k + 1

So any antimorphism must map H onto itself, and thus must induce one
of the antimorphisms of H mentioned above. So we have a family of regular
graphs H(k) on n = 13 + 8k vertices, n ≥ 37, for which every antimorphism
must have non-trivial cycles of length 1, 4 and 8.

We noted previously that H − {1} is an almost regular sc-graph whose
antimorphisms all have cycles of unequal length; the same reasoning is valid
for H(k)− {1}. So we have the following:

Proposition. For all integers n = 13 + 8k [n = 12 + 8k], except possibly
n = 20, 21, 28 or 29, there is a regular [almost-regular] sc-graph whose an-
timorphisms all contain non-trivial cycles of unequal length, specifically at
least one cycle of length 4 and at least one of length 8. ¤
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Open Problems3

3.46.

A. For which integers n do there exist

(1) vertex-transitive sc-graphs [Zelinka 1979]. In particular [Fronček,
Rosa and Širáň 1996] do these exist for n = pq, where graphs of
order pq where p and q are distinct primes both congruent to 3
(mod 4)?

(2) strongly regular graphs [Kotzig 1979]

(3) Cayley sc-graphs.

(4) reflexible [semi-reflexible, anti-reflexible] groups.

B. Are there any circulant sc-digraphs that are neither graphs nor tour-
naments?

C. [Alspach 1970] Do there exist vertex-transitive sc-tournaments that are
not circulant?

D. Do there exist vertex-transitive sc-graphs [digraphs, tournaments] which
are not Cayley graphs?

E. Construct further counterexamples (preferably an infinite family) to
Kotzig’s problem 3.37.B — that is, regular sc-graphs with F (G) 6=
F̂ (G).

F. (Kotzig’s last problem). Find bounds (or, for small k, exact values) for
µ(k), as defined in 3.37.F.

G. Construct strongly regular sc-graphs that are not Paley graphs, and at
least one that is not vertex-transitive.

H. Is it true that for every natural number k there is a vertex-transitive
self-complementary graph G on 4k+1 vertices with vertex connectivity
κ(G) = 2k? [Rao 1979a]

3See also 3.35
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Chapter 4

Self-complementarity

4.1. What importance do self-complementary graphs have for the rest of
graph theory? We saw in 1.65 that to prove or disprove the Strong Perfect
Graph Conjecture it is enough to consider only self-complementary graphs.
We now see that the same is true for the isomorphism problem; in fact,
even checking whether a graph is self-complementary is equivalent to the
isomorphism problem. We will consider how to measure the degree of self-
complementarity of graphs in general, and look at ways of generating the
sc-graphs, which gives us the opportunity to tackle antimorphisms in further
depth. Finally, we see the role that self-complementary graphs play in the
reconstruction conjecture and in defining certain codes.

The isomorphism problem

4.2. One of the most basic tasks when dealing with a particular class of
graphs is to distinguish members of the class from each other, and from non-
members. These are the isomorphism problem and the recognition problem,
respectively, for that class. For graphs in general the isomorphism problem
is as yet intractable - there is no known polynomial solution, and it is not
even known if one exists.

Obviously, any test for determining whether two graphs or digraphs are
isomorphic will also work for sc-graphs and sc-digraphs. It can also be used
to tell us whether a given graph is self-complementary, as we just need to
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check whether it is isomorphic to its complement.
It might be expected that the isomorphism problem would in fact be easier

to tackle when restricted to self-complementary graphs or digraphs, because
of their strong structural properties. It turns out, however [Colbourn and
Colbourn 1978, 1979], that the isomorphism problem for sc-graphs is polyno-
mially equivalent to the general isomorphism problem; we say that it is iso-
morphism complete. Even if we just want to know whether a graph or digraph
is self-complementary, the complexity is the same. This makes it improbable
that there will be any simple and quick test for recognising sc-graphs; for
example, comparing the chromatic polynomial of a graph with that of its
complement will not tell us whether it is self-complementary (see 1.59).

Recognition and isomorphism of self-complementary graphs therefore take
on added importance. They could provide a cure for what has been nick-
named the isomorphism disease, and even settle the famous (or notorious)
question of whether P is equal to NP, as we shall see.

4.3. Algorithmic problems are grouped into several classes according to
their complexity. The class P contains those problems which can be solved
in polynomial time. The class NP (for “Non-deterministic polynomial”) con-
tains those problems for which any proposed solution can be checked in
polynomial time, so P ⊆ NP. Of course, finding the solution in the first
place is another matter altogether; for many problems, such as the Travel-
ling Salesman Problem, the best known solution so far is highly inefficient
— for graphs with a few hundred or thousand vertices, it could take longer
to find an optimal solution than the time which has elapsed since the Big
Bang! It is thought that these problems are inherently difficult, but there is
as yet no proof of this, so the question “P = NP?” remains open.

The NP-complete problems are the hardest ones in NP, in the following
sense. If A is an NP-complete problem, then any polynomial-time solution for
A would give us a polynomial time solution for all the other problems in NP,
thus showing that P = NP. In the last three decades hundreds of problems
have been shown to be NP-complete, among them the Travelling Salesman
Problem, deciding whether a graph G is Hamiltonian, and deciding whether
G is k-colourable (for some fixed k ≥ 3). It is ironic that the Hamiltonian
problem has an O(n2) solution for self-complementary graphs (see 2.16),
whereas the isomorphism problem (which, for graphs in general, is thought
to be easier) has no known polynomial solution for sc-graphs.

There are polynomial time algorithms for testing the isomorphism of
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graphs with bounded valency [242], or graphs with no non-trivial automor-
phisms [29, 218]; for planar graphs there is even a linear time algorithm [209].
But we have shown in 1.21, 1.29 and 1.46 that the class of self-complementary
graphs does not satisfy any of these criteria.

4.4. Graph isomorphism is in NP, since if we are given two graphs G, H, and
a bijection from V (G) to V (H), we can check in polynomial time whether
it is in fact an isomorphism. It is not known whether graph isomorphism is
NP-complete, but it is known that if P 6= NP then there must be a third
class of problems whose complexity is strictly between P and NP, and the
graph isomorphism problem is thought to be a suitable candidate for such
an intermediate class.

Kobler et al. [223] give a detailed treatment of algorithmic issues and
graph isomorphism in particular, showing several ways in which it behaves
differently from most NP -complete problems. Significantly, they prove that
if graph isomorphism is NP-complete then P = NP, which makes it unlikely
that it is.

Our current state of knowledge therefore leaves three possibilities:

A. graph isomorphism is NP-complete and thus polynomial because P =
NP; or

B. graph isomorphism is polynomial, but not NP-complete, and thus P 6=
NP; or

C. graph isomorphism is neither polynomial nor NP-complete, and so P
6= NP.

By Kobler’s and Colbourn’s results, exactly the three same possibilities
occur for self-complementary graphs, and we have the following:

Theorem. P = NP if and only if the recognition or isomorphism of sc-graphs
is NP-complete.

Proof: If P = NP then the recognition or isomorphism of sc-graphs must
be polynomial, and thus NP-complete. Conversely, if they are NP-complete,
then graph isomorphism must also be NP-complete and thus, by Kobler et
al., we have P = NP. ¤
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Dor and Tarsi [108] settled a conjecture by Holyer, to the effect that, for
a given connected graph H with three edges or more, determining whether a
graph G has a decomposition into factors isomorphic to H is NP-complete.
The problem of self-complementarity is somewhat related; in this case, the
graph H can vary, but must always have n(n− 1)/4 edges, and G is always
Kn, where n = |V (H)|. Whether Dor and Tarsi’s results will be of any help
remains to be seen.

We now turn to the proof of Colbourn and Colbourn’s results.

4.5. Theorem. The digraph isomorphism problem is polynomial if and
only if the self-complementary digraph isomorphism problem is polynomial.
Proof: Let us say we want to check whether two digraphs D1, D2, on n
vertices are isomorphic. We form SD1,D2 by substituting D1 and D2 for the

vertices of ~P2 (see Figure 4.1). Obviously, if D1 and D2 are isomorphic, then

D1 D2D1 D2

Figure 4.1: SD1,D2 and SD1,D2

SD1,D2 is self-complementary. Conversely, let SD1,D2 be self-complementary.
Since every vertex in the copy of D1 has outdegree at least n, and every
vertex in the copy of D2 has outdegree at most n− 1, any antimorphism of
SD1,D2 will map D1 to D2. So

D1
∼= D2 ⇔ SD1,D2 is self-complementary.

If instead of D2 we use the converse, D′2, we see that

D1
∼= D2 ⇔ SD1,D2 is self-converse.

Moreover, if we can check for self-complementarity or self-converseness in
O(nr) time, for some constant r, then we can check any two digraphs for
isomorphism in O(2rnr + n2) = O(nr) time1. ¤

4.6. Theorem. The digraph isomorphism problem is polynomial if and
only if the recognition of self-complementary digraphs is polynomial.

1We must have r ≥ 2, because any isomorphism algorithm must check all n(n−1) pairs
of edges
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Proof: Let us say we want to check whether two digraphs D1, D2, on n
vertices are isomorphic. We form SD1 by substituting D1 and D1 for the
vertices of ~P2; and SD2 by substituting D2 and D2 (see Figure 4.2). SD1 and

D2 D2D1 D1

Figure 4.2: SD1 and SD2

SD2 are both self-complementary. As above, any isomorphism of SD1 and
SD2 must map D1 to D2, so we have

D1
∼= D2 ⇔ SD1

∼= SD2 .

Similarly, if we use the converses, D′
1 and D′2, instead of D1 and D2, we see

that we can check D1 and D2 for isomorphism by testing the isomorphism of
self-converse graphs. ¤

4.7. We note that if D1 and D2 are tournaments, then the digraphs SD1,D2 ,
SD1 and SD2 will also be tournaments, so that we have the following.

Theorem. The tournament isomorphism problem is polynomial if and only
if the recognition or isomorphism of sc-tournaments is polynomial. ¤

However, while the graph and digraph isomorphism problems are known
to be polynomially equivalent, it is uncertain whether they are equivalent
to the tournament isomorphism problem. This can be partly explained as
follows. The equivalence theorems all depend on representing an arbitrary
digraph or pair of digraphs by a unique self-complementary or self-converse
digraph. The automorphism group of the original digraph will be a subgroup
of the automorphism group of the sc-digraph; we say that the automorphism
group is preserved. But any tournament representation of a graph or digraph
cannot always preserve the automorphism group — graphs and digraphs can
have automorphism groups of any order, while tournaments can only have
odd-order automorphism groups. See also 1.32.

4.8. Theorem. The recognition and isomorphism problems for sc-graphs
are polynomially equivalent to the isomorphism problem for graphs in gen-
eral.
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Proof: We first show that testing isomorphism of two graphs G, H, on
n vertices is equivalent to testing self-complementarity of a graph on 4n
vertices. We form P(G,H) by substituting copies of G for the end-vertices
of a P4, and copies of H for the interior vertices (see Figure 4.3). Obviously

GG HGHH GHG

Figure 4.3: P(G,H) and P(G,H)

if G and H are isomorphic, then the new graph will be self-complementary.

Conversely, any isomorphism between P(G,H) and P(G,H) = P(H,G)
must map G onto H, showing that they are isomorphic. To see this, denote
the four graphs of P(G,H) by G1, H2, H3 and G4, while the graphs of
P(H,G) are denoted H1, G2, G3 and H4. Let v be a vertex in G1; since v
has degree at most 2n − 1, while all the vertices in G2 and G3 have degree
at least 2n, then without loss of generality we need only consider the case
where v maps onto some vertex in H1. Any other vertex w ∈ G1 must map
onto some vertex in H1 or H4; but since d(v, w) ≤ 2, w cannot map onto a
vertex in H4. So G1 must map entirely onto H1.

To prove the second part of the theorem, we note that P(G,G) and
P(H,H) (Figure 4.4)are always self-complementary, and they are isomorphic
if and only if G ∼= H. ¤

H HHHG GGG

Figure 4.4: P(G,G) and P(H,H)

4.9. Once again, we have used the technique of substituting copies of G and
H into a sc-graph. It is ironic that Colbourn and Colbourn [93] explicitly
rejected the use of P4, saying they could not find a suitable substitution, and
went instead for a sc-graph on 9 vertices. Harary, Plantholt and Statman,
who gave a different proof of these important results in [186], stated that
whenever G and H are connected, P(G,H) ∼= P(H,G) ⇔ G ∼= H, appar-
ently not noting that the result is true for any graphs G, H. Statman later
used P(G,H) for his results on reconstruction (see 4.42), taking care to note
that in his proof G and H would be connected. Corneil also used P(G,G) in
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showing that the Strong Perfect Graph Conjecture is reducible to the SPGC
for sc-graphs, but he only needed the fact that P(G,G) is self-complementary
(see 1.65).

We now turn to Colbourn and Colbourn’s last result, showing that even
the isomorphism and recognition problem for regular self-complementary
graphs is equivalent to the general problem. This is not so surprising —
if anything, we would expect isomorphism testing to be harder for regular
graphs — but it is interesting because it shows that all graphs have a unique
regular self-complementary representation. Colbourn and Colbourn actually
used the self-complementary representation defined in the previous theorem
to construct a regular self-complementary graph. We modify their approach
slightly to do this directly. A similar construction was used by McDiarmid
and Steger [248].

4.10. Theorem. The recognition and isomorphism problems for regular
self-complementary graphs is polynomially equivalent to the isomorphism
problem for graphs in general.

Proof: Given two graphs G, H, on n vertices, we form a graph C(G,H)
as follows. We take a vertex x, two copies of G (call them G1, G2), and two
copies of H (call them H3, H4). A vertex vi of G is labelled v1i in G1 and v2i
in G2; similarly the vertices of H3, H4 are labelled v3j and v4j. Each vertex
of G1 is adjacent to x and to all the vertices H3, while each vertex of G2 is
adjacent to x and to the vertices of H4. Finally,

v1i ∼ v2j ⇔ i 6= j and vi 6∼ vj in G

v3i ∼ v4j ⇔ i = j or vi ∼ vj in H.

It is not difficult to check that C(G,H) is regular of degree 2n, and that if
G ∼= H then C(G,H) is self-complementary. We now show that the converse

is true. So let φ : C(G,H)→ C(G,H) = C(H,G) be an isomorphism. Since x
is the only vertex whose neighbours induce a regular graph of degree n−1, we
must have φ(x) = x, and so C(G,H)−x ∼= C(H,G)−x. Let v be any vertex
of degree 2n in C(G,H); its neighbours of degree 2n − 1 induce a subgraph
isomorphic to G. Similarly, if w is any vertex of degree 2n in C(H,G), its
neighbours of degree 2n − 1 induce a subgraph isomorphic to H. Thus φ
must induce an isomorphism of G onto H.

To prove the second part of the theorem, we note that C(G,G) and
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C(H,H) are always self-complementary, and they are isomorphic if and only
if G ∼= H.

Finally we note that, by 1.41, the graphs constructed will all have diame-
ter two, so that no isomorphism test can depend on the degree and distance
parameters. ¤

Generating self-complementary graphs

4.11. If we cannot easily test a graph for self-complementarity, or check
whether two sc-graphs are isomorphic, it would at least be useful to have a
catalogue of self-complementary graphs. Such lists have been compiled by
various authors — Alter [22] and Venkatchalam [375] for n = 8, Morris [256,
257] for n = 8 and 9, Kropar and Read [232] for n = 12, Faradžev [118]
for n ≤ 12, and McNally and Molina [252] for n = 13. The focus here
is on systematically generating all self-complementary graphs, rather than
providing sporadic constructions to show the existence of sc-graphs with
certain properties.

The enumeration results of Chapter 7 come in handy when generating
sc-graphs, as they can tell us when (or if) the total number of sc-graphs has
been generated.

Counting formulas such as those of Parthasarathy and Sridharan [285]
are especially useful, as instead of providing a single figure for the total
number of sc-graphs on n vertices, they count the number of sc-graphs of each
degree sequence. It is a common feature of most generation algorithms that
they produce many duplicates, so one has to perform isomorphism checks
for each graph generated. Using the Parthasarathy-Sridharan formula, we
can know when the total number of non-isomorphic sc-graphs with a given
degree sequence has been reached; after that, one can immediately discard
any further graphs with the same degree sequence without performing an
isomorphism check.

Kropar and Read [232] used this formula after they had generated their
list of s-c graphs on 12 vertices and found that they were one graph short.
They corrected their algorithm, but rather than re-generating all 720 graphs,
they found the degree sequence of the missing graph, and constructed (cor-
rectly, this time) just those sc-graphs with that sequence.

Molina’s method for generating odd order sc-graphs, described in 1.44,
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also avoids the need for many isomorphism checks, as it distinguishes between
sc-graphs according to their structure. Those of type (A,B) are generated
separately, and cannot possibly be isomorphic to those of type (A′, B′) unless
A ∼= A′ and B ∼= B′; even the isomorphism checks between graphs of the
same type must satisfy certain constraints (namely, any isomorphism would
have to map A onto A′ and B onto B′), and this makes for further efficiency.

Faradžev too has his own algorithm for generating various types of graphs,
but the more usual methods are based on the use of antimorphisms, as de-
scribed originally by Sachs [341] and Ringel [320]. The rest of this section
will be devoted to their results, which show that every feasible permutation is
an antimorphism of some sc-graphs, and tells us how to construct all the sc-
graphs which have a given antimorphism. Ironically, Robinson [324, Section
6] and Clapham [88] used this construction to count the number of sc-graphs
directly, an approach suggested by Read in his review of Sachs’ paper.

4.12. Theorem. A permutation σ is an antimorphism of some sc-graph if
and only if

A. all the cycles of σ have length a multiple of 4, or

B. σ has one fixed vertex, all other cycles having length a multiple of 4.

Proof: We describe an algorithm to construct all sc-graphs which have σ
as an antimorphism, and show that this works only when condition A or B
is satisfied. Let Kn be the complete graph on n vertices.

I. Take an arbitrary pair of vertices {a, b}, and colour the edge between
them red. Colour all the edges σ2i{a, b} = {σ2i(a), σ2i(b)} red, and all
the edges σ2i+1{a, b} blue, for each integer i.

II. Repeat step I for any uncoloured edges, until all edge orbits have been
coloured.

III. From each orbit, choose either the red edges or the blue edges (we may
choose red edges from one orbit and blue from another). The chosen
edges then form a self-complementary graph.

If there are s orbits, then there are 2s different ways of making the choices in
C, though some of them may give us isomorphic graphs, and some sc-graphs
may also be associated with other antimorphisms with different cycle lengths

105



(such as σ3, if σ’s order is not a power of 2). Evidently there are no other
sc-graphs with antimorphism σ, apart from the ones produced here.

The colouring described in A is well-defined, unless some edge {a, b} is
coloured both red and blue, that is, unless {a, b} = σ2i+1{a, b} for some i.
This can happen in three ways:

Case 1: a and b are in the same cycle, and we have a = σ2i+1(a) and
b = σ2i+1(b). Then the cycle length divides 2i + 1, in particular, the cycle
length is odd. Conversely, if there were a cycle of odd length 2i + 1 > 1
any two vertices of the cycle would give rise to this problem, so σ can only
contain even-length cycles and fixed vertices.

Case 2: a and b are in the same cycle, and we have a = σ2i+1(b) and
b = σ2i+1(a). Then the cycle has length 4i + 2. Conversely, if there were a
cycle (v1, v2, . . . , v4i+2), then v1 and v2i+2 would give rise to this problem, so
σ cannot contain any cycles of length 2 (mod 4).

Case 3: a and b are in different cycles. Then we must have a = σ2i+1(a)
and b = σ2i+1(b). This can only happen if both cycles have odd length; since
we have ruled these out, except for the fixed vertices, we see that we cannot
have two or more fixed vertices.

So the algorithm works if and only if σ has at most one fixed vertex, and
all other cycles have length a multiple of 4. ¤

4.13. The algorithm can be modified, refined and specialised in a number
of ways, which we describe below:

Self-complementary digraphs. [Zelinka 1970b] If we apply the al-

gorithm to the complete digraph ~Kn we obtain all self-complementary di-
graphs. The only modification is that now we have ordered pairs of vertices,
so (a, b) and (b, a) are distinct arcs and it does not matter if a = σ2i+1(b)
and b = σ2i+1(a) (Case 2 in the proof above). Therefore, all even cycles are
admissible. In the infinite case, infinite cycles are also admissible, and this
is true of all the other types of self-complementary structure.

Sc-tournaments. [Zelinka 1970b, Salvi-Zagaglia 1979] A tournament can-
not contain both (a, b) and (b, a), so now we must check that we do not get
a = σ2i(b) and b = σ2i(a). This will happen whenever a and b are in the
same cycle of length 4i, at distance 2i apart. So, ironically, a permutation is
the antimorphism of a sc-tournament if and only if it consists of even cycles
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whose length is not a multiple of 4, and at most one fixed vertex.

Sc-multigraphs. Instead of choosing the red edges from an orbit and dis-
carding the blue (or vice versa) we can replace each red edge in an orbit by
t multiple edges, and each blue edge by r− t edges, for some constant r and
some t ≤ r, where we choose the value of t independently for each orbit.
This will give us all self-complementary r-multigraphs, and similarly we can
obtain all self-complementary r-multi-digraphs. For r = 1 we get the usual
self-complementary graphs and digraphs.

self-converse digraphs. [Salvi-Zagaglia 1978] The construction of self-
converse digraphs is significantly different. The arc orbits are now defined
by σ2i(a, b) = (σ2i(a), σ2i(b)) and σ2i+1(a, b) = (σ2i+1(b), σ2i+1(a)). In partic-
ular:

• There is no problem if we have a = σ2i+1(a) and b = σ2i+1(b) for some
i; it just means that that particular arc orbit will include both (a, b)
and (b, a). So now, any cycle lengths are admissible.

• A 2-cycle of σ, say (a b) will give us two separate arc orbits, (a, b) and
(b, a).

For each arc orbit we can choose either to include all the arcs of that orbit,
or none; of course we make each choice independently. If we make the same
choice for each orbit, we obtain the trivial self-converse digraphs ~Kn and the
null digraph.

If we want to construct self-converse r-multi-digraphs, then in each orbit
we replace every arc by a bundle of t arcs, for some t < r, where the choice
of t is made independently for each orbit. For r = 1 we obtain the usual
self-converse digraphs as described in the previous paragraph.

4.14. Cavalieri d’Oro [65] has described a construction algorithm for self-
converse digraphs as follows. Take an arbitrary digraph D with vertices
v1, . . . , vn, and a copy of its converse D′ with vertices v′1, . . . , v

′
n. For every

i, j, we can add a pair of arcs (vi, v
′
j) and (vj, v

′
i). Finally we can add any

number of vertices wx, and any pairs of arcs of the form

• (wx, wy) and (wy, wx), or

• (wx, vi) and (v′i, wx), or
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• (wx, v
′
i) and (vi, wx).

Then the involution (v1v
′
1)(v2v

′
2) · · · (vnv′n)(w1)(w2) · · · (wp) will map this di-

graph onto its converse. It can easily be seen that, in fact, all self-converse
digraphs with a converting permutation of order 2 can be constructed in this
way. However, as Salvi-Zagaglia pointed out, there are self-converse digraphs
which do not have an involutory converting permutation, which is why her
algorithm is necessary.

Hemminger and Klerlein [205]2 remarked that Cavalieri d’Oro’s claim,
that all self-converse digraphs have an involutory antimorphism, is equivalent
to the claim that “All bipartite graphs with an automorphism interchanging
the two parts has such an automorphism of order 2,” and they presented a
counterexample, due to Lovász.

To see that the two (false) claims are equivalent, we represent a digraph
D with vertex-set {u1, . . . , un} by a bipartite graph G with partition A =
{v1, . . . , vn} and B = {w1, . . . , wn}, in which

(vi ∼ wj)⇔ (ui → uj).

Then the converse of D is represented by the graph G with partite sets
switched, which is isomorphic to G if and only if D is self-converse.

For further exploration of this bijection between (self-converse) digraphs
and bipartite graphs, using different terminology, see [31] and [164].

4.15. We can refine the basic construction algorithm in two ways. First,
once we construct all sc-graphs on 4k vertices (with all their associated anti-
morphisms), we can construct the sc-graphs on 4k+1 by adding a new vertex
v and joining v either to the odd-labelled vertices or the even-labelled vertices
of each cycle (v1v2 . . . v4s) of the antimorphism. We can choose odd or even
independently for each cycle, so if there are t cycles in the antimorphism,
this will give us 2t sc-graphs, some of them possibly isomorphic. However,
Lemma 1.36 ensures that two non-isomorphic sc-graphs G and H on 4k ver-
tices will always give non-isomorphic sc-graphs on 4k + 1 vertices, even if
they have a common antimorphism. It is important to use all the antimor-
phisms for each graph G on 4k vertices, as each antimorphism may produce
sc-graphs on 4k+1 vertices which are not produced by other antimorphisms.

2The article ends with a remark about a paper in preparation by Hemminger which
characterises self-converse bipartite digraphs. However, we could not find any further
reference to this paper in the math reviews.
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It seems that Morris [256, 257] used this approach when constructing
lists of sc-graphs on 8 and 9 vertices. This technique applies equally well to
self-complementary digraphs.

The second refinement is due to Gibbs [150, 151] and Salvi-Zagaglia [344],
who noted that all self-complementary graphs and digraphs, and self-converse
digraphs have an antimorphism of order 2r for some r — given any antimor-
phism σ of order 2r(2s + 1) for some r, s, just consider the antimorphism
σ2s+1. We note that for self-complementary graphs we must have r ≥ 2, for
self-complementary digraphs we have r ≥ 1, and for self-converse digraphs
we have r = 0 only when the digraph is symmetric (that is, a graph with
each edge replaced by a pair of opposite arcs). So we can always restrict the
algorithm to antimorphisms whose cycle lengths are powers of 2 to produce
a complete list of sc-graphs.

We now look at antimorphisms which have just one cycle, a subject also
tackled in 1.70. (Part A of the next theorem was stated formally by Gibbs,
and also by Rao [305, Observation 3.5], but it is implicit in Sachs’ work).

4.16. Theorem[Sachs 1962]. Let G be a self-complementary graph with a
cyclic antimorphism σ = (v1v2 . . . v4k). Then

A. Each odd-labelled vertex of G is adjacent to exactly k even-labelled
vertices and each even-labelled vertex is adjacent to exactly k odd-
labelled vertices.

B. The degrees of the vertices are alternately r and 4k − 1 − r, for some
k ≤ r ≤ 3k − 1. Moreover, for every such r, there is at least one
sc-graph with antimorphism σ and degrees r and 4k − 1− r.

Proof: Because σt is an antimorphism for t odd, and an automorphism for
t even, we have

v2s+i ∼ v2s+j ⇔ vi ∼ vj ⇔ v2s+1+i 6∼ v2s+1+j ∀i, j, s

where subscripts are taken modulo 4k. In particular, we have

v1 ∼ v2i ⇔ v1+(4k+1−2i) 6∼ v2i+(4k+1−2i) ⇔ v4k+2−2i 6∼ v1.
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Writing this out in full, we have

v1 ∼ v2 ⇔ v1 6∼ v4k
v1 ∼ v4 ⇔ v1 6∼ v4k−2
v1 ∼ v6 ⇔ v1 6∼ v4k−4

...
v1 ∼ v2k ⇔ v1 6∼ v2k+2.

So v1 is adjacent to exactly half of the 2k even-labelled vertices. Exactly
similar arguments hold for every other vertex, and this proves part A. It also
shows that the degree of v1, say r, must be at least k and at most 3k − 1.
Obviously σ(v1) = v2 will have degree r in σ(G) = G, and thus v2 has degree
4k+1−r in G, and the degrees will alternate like this between r and 4k−1−r.
This proves the first part of B.

We now consider the adjacencies of v1 with the odd-labelled vertices. We
have

v1 ∼ v2i+1 ⇔ v1+(4k−2i) ∼ v2i+1+(4k−2i) ⇔ v4k+1−2i ∼ v1.

Again, writing this out in full we have

v1 ∼ v3 ⇔ v1 ∼ v4k−1
v1 ∼ v5 ⇔ v1 ∼ v4k−3
v1 ∼ v7 ⇔ v1 ∼ v4k−5

...
v1 ∼ v2k−1 ⇔ v1 ∼ v2k+3.

So 2(k − 1) of the adjacencies with the odd-labelled vertices must occur in
pairs. Finally, the adjacency of v1 with v2k+1 can be chosen independently
of the other adjacencies of v1.

So if we want to construct a sc-graph with v1 having even degree r = k+2s
where 0 ≤ s ≤ k−1, we choose k adjacencies with the even-labelled vertices,
and exactly 2s adjacencies with the odd-labelled vertices. If we want v1 to
have odd degree r = k + 2s + 1, we also choose the adjacency of v1 with
v2k+1. ¤

4.17. Theorem[Sachs 1962]. Every antimorphism is the antimorphism of
some regular or almost regular sc-graph.

Proof: We first show, by induction on the number of cycles, that an anti-
morphism σ on 4k vertices has an associated almost regular sc-graph. When
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σ consists of just one cycle, the result follows from the previous theorem by
putting r = 2k−1. If σ has t > 1 cycles, then by induction we can construct
an almost regular sc-graph A on the first s − 1 cycles, and another almost
regular sc-graph B on the last cycle.

If |V (A)| = 4a and |V (B)| = 4b, where a+b = k, then A will have degrees
2a− 1 and 2a, while B will have degrees 2b− 1 and 2b. We now show how to
join every vertex of A to exactly 2b vertices of B, and every vertex of B to
exactly 2a vertices of A to construct a sc-graph with degrees 2k − 1 and 2k.

Let the vertices of each cycle be numbered consecutively, and let Ai [resp.
Bi] be the set of vertices of A [resp. B] with subscripts congruent to i
(mod 4). We note that |Ai| = a, |Bi| = b, σ(Ai) = Ai+1 and σ(Bi) = Bi+1

for all i, with subscripts taken modulo 4.
If we join the vertices of A1 to those of B1 and B2, those of A2 with

those of B1 and B4, those of A3 with those of B3 and B4, and the vertices
of A4 with those of B2 and B3, it can be checked that the resulting graph is
self-complementary and, as noted above, almost regular.

Now, if we have a permutation σ′ = (v0)σ on 4k+1 vertices, we construct
an almost regular sc-graph on σ as above, and then join v0 to the vertices of
degree 2k − 1, thus obtaining a regular sc-graph with antimorphism σ ′. ¤

4.18. We note that this is very similar to the method we used in 1.28
to construct sc-graphs of diameter 3 without end-vertices. Results on the
antimorphisms of self-complementary hypergraphs and almost self-comple-
mentary graphs can be found in 5.1 and 5.41, respectively.

Self-complement indexes

4.19. It is interesting to measure how “close” a graph is to being self-comple-
mentary. There are a couple of intuitive ways of doing this, which we will
describe below. The self-complement index s(G) is defined as the order of
the largest induced subgraph H of G such that H is also induced in G. For
a graph of order n we have 1 ≤ s(G) ≤ n, and the following result is easy to
prove:

Lemma[Akiyama, Exoo and Harary 1980]. Let G be a graph of order n.
Then
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A. s(G) = s(G).

B. s(G) = n if and only if G is self-complementary.

C. If H is an induced self-complementary subgraph of G then s(G) ≥
|V (H)|. ¤

4.20. The induced number m(G) is the minimum order of a graph which
contains both G and G as induced subgraphs; obviously m(G) ≥ n, and A
and B above are also true for m(G). Akiyama et al. showed that in fact the
two indexes are equivalent.

Theorem. If G is a graph of order n then m(G) = 2n− s(G).

Proof: Let G have n vertices, and let H of order s be a largest induced
subgraph of G whose complement is also induced in G. Take a copy of G
and a copy of G; these will both contain H as an induced subgraph. By
“superimposing” these copies of H we obtain a graph of order 2n − s in
which both G and G are induced subgraphs, so that m(G) ≤ 2n− s.

Now let F be a graph in which G and G are both induced subgraphs.
Let X [resp. Y ] be sets of vertices inducing G [resp. G]. Then the subgraph
induced by X ∩ Y is an induced subgraph of both G and G, so by 4.19.C
|X ∩ Y | ≤ s. Thus m ≥ |X ∪ Y | ≥ 2n− s. ¤

4.21. Theorem. For all n, and all positive integers k < n, there is a graph
G of order n with s(G) = k. A graph G with s(G) = n exists if and only if
n ≡ 0 or 1 (mod 4).

Proof: The second part of the theorem is obvious. We now prove the first
part.

Case A. k ≡ 0 or 1 (mod 4). Let H be a sc-graph of order k, and define
G := H ∪Kn−k; then s(G) = k.

Case B. k ≡ 2 or 3 (mod 4). Let H be a sc-graph of order k − 2, and
construct a graph G as follows: add two new vertices u, v, joining them to
all the vertices of H (but not to each other), and a third vertex w which
we join to v; finally add n − k − 1 isolated vertices (see Figure 4.5). Then
the graphs induced by V (H)∪{v, w} and V (H)∪{u, v} are complements of
each other, so that s(G) ≥ k. Any larger induced subgraph must be either
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Kn−k−1H
v

wu

Figure 4.5: A graph with s(G) = k, k ≡ 2 or 3 (mod 4)

the graph induced by V (H)∪{u, v, w}, whose complement is not induced in
G; or else must contain an isolated vertex, so that its complement contains
a vertex of degree at least k, which does not occur in G. ¤

4.22. We introduce some notation before the next result. A pendant edge
of G is an edge incident to an endvertex. A complete graph on n vertices,
with one pendant edge attached, is denoted by Kn ·K2; while Kn +K2 ◦K1

denotes a complete graph on n + 2 vertices, with two independent pendant
edges (see 1.10).

Theorem. The self-complement indexes of complete graphs, complete bi-
graphs, complete graphs plus one pendant edge, trees, cycles, unicyclic graphs,
and complete graphs with two independent pendant edges, are given by

A. s(Kn) = 1;

B. s(Km,n) = 2, for max(m,n) ≥ 2;

C. s(Kn ·K2) = 3;

D. s(Cn) = 4, for n ≥ 6

E. s(T ) = 4 when T is a tree that is not a star;

F. s(Kn +K2 ◦K1) = 5. ¤

The proof of D simply notes that for any graph G with five or more
vertices, either G = G is a pentagon, or else G or G contains a triangle. It
then follows that s(G) = 4 for any unicyclic graph with cycle of length at
least 6; s(G) = 5 for a unicyclic graph with cycle of length exactly 5; and
s(G) = 4 for any unicyclic graph containing C4, except for C4 itself, which
has self-complement index 2.
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4.23. Another measure of self-complementarity is the self-complementary
closure number, sc(G), the order of the smallest self-complementary graph
which contains G as an induced subgraph.

Theorem. For any graph G of order n

A. sc(G) = sc(G).

B. sc(G) ≥ m(G) ≥ n, and sc(G) = n if and only ifG is self-comlementary.

C. sc(G) ≤ 4n.

D. sc(G) ≤ 2n if G has a pair of interchangeable sets.

Proof: A and B are obvious. For C, consider the P4-join of (G,G,G,G), for
example. D was proved by Nair [266] (see 1.42 for the proof) and Rall [297]. ¤

Rall also showed that for bipartite graphs, sc(G) ≥ 2n− 4.

4.24. It would be interesting to consider the size of the largest induced self-
complementary subgraph of G, a parameter which we can denote by si(G).
This has the usual properties one would like it to have:

Lemma. For a graph G of order n

A. si(G) = siG.

B. 1 ≤ s(G) ≤ si(G) ≤ n, and si(G) = n iff G is self-complementary.

C. For all k ≤ n, k ≡ 0 or 1 (mod 4), there is a graph of order n with
si(G) = k. ¤

However, there is no obvious equivalence between sc(G) and si(G), as
there was for s(G) and m(G).

4.25. The following results, due to Benhocine and Wojda [36], are of related
interest, but here the graphs and digraphs are not induced subgraphs of
self-complementary graphs or digraphs.
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Theorem. Every digraph with n ≥ 3 vertices and at most n arcs is contained
in a sc-digraph of order n. ¤

4.26. Theorem. Let G be a graph of order n ≡ 0 or 1 (mod 4), with at
most n − 1 edges. Then G is contained in a sc-graph S of order n, unless
G ∈ {C4 ∪ K1, C3 ∪ K1,n−4, K1,n−1}. Moreover, S has an antimorphism of
order 4. ¤

4.27. Conjecture[Benhocine and Wojda 1985]. Every digraph of order n
with at most 2n− 3 edges is contained in a sc-digraph of order n, unless n is
even and D (or its converse) is the digraph with arcs

(v1, v2), (v1, v3), . . . , (v1, vn), (vn−1, vn), (vn−2, v1), (vn−3, v1), . . . , (v2, v1).

4.28. Chartrand et al. [72] have defined another measure of self-comple-
mentarity, one which is not as obvious as the ones considered so far. Let G
be any graph, H a set of its vertices, and H ′ := V (G)−H. Then G switched
on H, denoted by SH(G) is the graph with V (SH(G)) = V (G) and

E(SH(G) = E(H) ∪ E(H,H ′) ∪ E(H ′)

where E(H,H ′) denotes the set of edges between H and H ′ which are not
present in G. When H is just a single vertex, we get the usual switching
operation; while S∅(G) = G and SV (G)(G) = G. So SH(G) is intermediate
between G and G. The switching number sw(G) is then defined to be the
largest number of vertices in a set H for which SH(G) ∼= G.

Lemma. A. For any graph G and any set of vertices H

SH(G) = SH(G) and thus sw(G) = sw(G).

B. For a graph G of order n, 0 ≤ sw(G) ≤ n, and sw(G) = n if and only
if G is self-complementary.

C. For all graphs G of order n, sw(G) 6= n− 1.

D. If G is a regular graph of order n and degree r 6= n−1
2
, then sw(G) = 0.

In particular

sw(Kn) = sw(Kn) = 0 for n ≥ 2, and
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sw(Cn) = 0 for n 6= 5.

Proof: A and B are easy. For C, we note that if H is a set of n−1 vertices,
then SH(G) = SV (G)(G). For D we note that, for any set ∅ 6= H ⊆ V (G),
where SH(G) ∼= G, and any v ∈ H,

dG(v) = r = n− r − 1 = dSH(G)(v),

so we must have r = n−1
2
. ¤

4.29. Part C of the lemma above gives us a hint that sw(G) might have
some strange behaviour. In fact, Chartrand et al. showed that there do not
always exist graphs G of order n with sw(G) = k. The constraints on n and
k, in terms of their residue (mod 4), are shown in Table 4.1. The question
marks in the table denote combinations of n and k for which the existence is
still open.

n
k 0 1 2 3
0 Yes Yes Yes Yes
1 No Yes No Yes
2 No No No No
3 ? No ? No

Table 4.1: The existence of a graph G of order n (mod 4) with sw(G) = k
(mod 4).

There are still graphs which are arbitrarily close (or far away) from be-
ing self-complementary, in the following sense: If a graph G of order n has
switching number k, define its switching coefficient to be k

n
. Then every

rational number number 0 ≤ r ≤ 1 is a switching coefficient of an arbitrar-
ily large graph. For r = 0 take any of the regular graphs described in the
lemma above, and for r = 1 take any self-complementary graph. For r = a

b
,

take a graph with 4mb vertices and switching number 4ma, for some m; the
existence of such a graph is guaranteed by Chartrand et al.’s results.

4.30. It might seem that the switching number is not as interesting as the
other measures of self-complementarity defined previously, because of the
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non-existence results summarised in Table 4.1. But we must not forget that
self-complementary graphs themselves only exist when n ≡ 0 or 1 (mod 4).
This particular gap is filled by the almost self-complementary graphs (asc-
graphs), which exist only for n ≡ 2 or 3 (mod 4); a graph G is almost
self-complementary if it is isomorphic to K̃n − G, where K̃n = Kn − e for
some edge e of Kn. Since sw(G) is equal to n precisely for self-complement-
ary graphs, and can never be equal to n − 1, the following result is quite
appropriate.

Proposition. For a graph G on n vertices, sw(G) = n − 2 if and only if G
or G is almost self-complementary.

Proof: Let H be a set of n − 2 vertices such that SH(G) ∼= G, and let
V (G)−H = {u, v}.

If e = uv is not an edge of G, then G and SH(G) are complements in
Kn − e, and so G is an asc-graph. If e = uv is an edge of G, then it will
not be an edge of G, and since SH(G) = SH(G) ∼= G, the previous argument
shows that G is almost self-complementary.

Conversely, any graph G which is self-complementary in Kn− e will have
SH(G) ∼= G, and since it must have n ≡ 2 or 3 (mod 4), it cannot be
self-complementary; therefore sw(G) is exactly n − 2. Also, G will satisfy
SH(G) = SH(G) ∼= G, so that sw(G) = n− 2. ¤

4.31. In his study of almost self-complementary graphs, Clapham [89] noted
that their self-complement index is n−1, but the converse is not true — there
are graphs with s(G) = n − 1 even for n ≡ 0 or 1 (mod 4). Furthermore,
for n ≡ 2 or 3 (mod 4) (and thus n − 1 ≡ 1 or 2 (mod 4)) we can take
the examples of Theorem 4.21, which are not asc-graphs. For further details
see 5.35–5.44; the result on antimorphisms of asc-graphs shows that they
may contain induced sc-subgraphs on n − 2 vertices, but then again, they
may not. We therefore propose the following line of enquiry:

Problem. What can we say about si(G) when G is almost self-complement-
ary?
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Logical connections

4.32. Many of the results on self-complementary graphs are really corollaries
of theorems about complementary graphs, of the form “For every graph G
with at least N vertices, property P holds either in G or in G”.

Such results (usually called Nordhaus-Gaddum-type results when they
involve some invariant like chromatic number — see 1.57) have been investi-
gated by McKee. In graph theory we are obviously interested in valid proper-
ties, which are true of all graphs. A property which is true for every graph or
its complement, is said to be semi-valid. The existence of self-complementary
graphs rules out the possibility of any property which is valid in exactly one
of G and G for all G.

The best-known semi-valid property is connectivity — every graph is
either connected or has a connected complement (1.8). Even easier are the
properties “has at least 1

2

(

n
2

)

edges” and “has at most 1
2

(

n
2

)

edges”. Evidently,
any property that follows from a semi-valid property is itself semi-valid.

Many properties are semi-valid only for graphs with enough vertices; for
example “contains a triangle” holds for graphs of order at least 6. We can
say that this property is “eventually semi-valid”; to express it rigorously we
have to put it as “has order less than six or contains a triangle.” Similarly
we have “has order less than nine or is nonplanar” (1.46), and “has order
less than six or is both connected and has a pancyclic line graph” (2.23).

If we assume a language strong enough to include “is isomorphic to G”
as a sentence, for a given graph G, then we have the following logical char-
acterisation.

Lemma. A graph is self-complementary if and only if it satisfies all semi-
valid sentences.

Proof: Obviously a sc-graph satisfies all semi-valid sentences. Now, let G
be a non-self-complementary graph and let σ be the sentence “is not isomor-
phic to G”. Then σ is semi-valid, but G does not satisfy σ. ¤

For a detailed treatment see [250], and see [251] for an extension to the
case where the complete graph is split into three subgraphs (instead of two,
as happens with a graph and its complement).

Incidentally, for a given property P and a graph G which has that prop-
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erty, Chartrand et al. proposed the question of determining the size of the
largest H for which SH(G) also has P (see 4.28 for definitions). We might
even try to find all subsets H for which SH(G) has property P . Given a par-
ticular collection of subsets ∅ 6= H 6= V (G), which are the graphs for which
G = S∅(G), SH(G) and SV (G)G = G all have property P? Just as switching
a graph on H can be seen as a partial complementation, so we can say that
these problems are about partial semi-validity.

4.33. Another logical approach of relevance to self-complementarity is the
first-order logical theory of graphs developed by Blass and Harary in [43].
Their first-order language L consists of predicate symbols for equality and
adjacency, propositional connectives not, and, and or, the existential quan-
tifier ∃, and the propositional constants true and false. The axioms of the
theory include Axiom 0, which stipulates that a graph has at least two points
and that adjacency is irreflexive and symmetric. For k ≥ 1, Axiom k is sat-
isfied by a graph if, for any sequence of 2k of its points, there is another
point adjacent to the first k points but not to the last k. Blass and Harary
proved that any L-sentence which holds for almost all graphs is deducible
from finitely many of the axioms.

In [44] they discovered the first family of graphs known to satisfy Axiom
k for each k; it turns out that this family is just the Paley graphs. They then
used these results to show that self-complementarity cannot be expressed as
an L-sentence.

Theorem. If p ≡ 1 (mod 4) is prime, and p > k224k, then the Paley graph
on p vertices satisfies Axiom k. Consequently, the following properties of
graphs are not first order:

A. self-complementarity

B. regularity

C. Eulerian-ness

D. rigidity (lack of non-trivial automorphisms)

Proof: We will prove only the second part. If P is any of the first three
properties then we cannot deduce “not P” from finitely many axioms, be-
cause for any finite set of axioms there is a Paley graph which satisfies P and
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all of the axioms. We also know that “not P” holds for almost all graphs
(see 7.15 for self-complementarity), and so “not P” cannot be an L-sentence;
therefore P cannot be an L-sentence. For D, the argument is the same except
that P and “not P” change roles. ¤

The theorem does not really tell us much about how easy or difficult it is to
recognise self-complementary graphs, because Eulerian-ness and regularity,
which are both very easy to recognise, are not first order either.

The bound given above on the order of Paley graphs satisfying Axiom k
is quite rough. For example, the theorem tells us that the Paley graphs on
17 and 1033 vertices satisfy Axioms 1 and 2, respectively, but it is known
that so do the Paley graphs on 5 and 61 vertices, respectively. (In fact the
pentagon is the smallest graph to satisfy Axiom 1). It is an unsolved problem
to find the minimum order of a graph satisfying Axiom k, and the least p for
which the Paley graph on p vertices satisfies Axiom k.

The reconstruction conjectures

4.34. The deck D(G) of a graph G consists of the multi-set of vertex-
deleted subgraphs of G, that is, the collection of induced subgraphs H with
|V (H)| = |V (G)|−1. The edge-deck ED(G) consists of the set of subgraphsH
(not necessarily induced) with |E(H)| = |E(G)|−1. Note that all subgraphs
are unlabelled, and may appear more than once in the deck. Two decks
or edge-decks (H1, . . . , Hr), (H

′
1, . . . , H

′
r) are said to be isomorphic if there

is a permutation φ such that Hi
∼= H ′

φ(i)∀i. The Graph Reconstruction

Conjecture [Edge-Reconstruction Conjecture] states that two graphs with at
least 3 vertices [at least 4 edges] are isomorphic if and only if they have
isomorphic decks [edge-decks]. A graph whose [edge-]deck is unique up to
isomorphism is said to be [edge-]reconstructible.

It is known that disconnected graphs and regular graphs are reconstruc-
tible, and that (in a probabilistic sense) almost all graphs are reconstructi-
ble. It is also known that the Reconstruction Conjecture implies the Edge
Reconstruction Conjecture, but both of them remain till today among the
most important open problems in graph theory.

4.35. Clapham and Sheehan’s investigations [91] into the edge-reconstruction
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conjecture have included a look at self-complementary graphs, but without
any concrete results in this regard.

Lovász [240] showed that graphs with |E(G)| > 1
2

(

n
2

)

are edge-reconstruct-
ible. For us this is still “an edge too far”, but it comes in handy in the
following case.

Let the i-th power of G be the graph Gi, with the same vertices as G and
an edge between any two vertices at distance at most i in G. Obviously when
i is greater than or equal to the diameter, Gi is just Kn. So for self-comple-
mentary graphs the only interesting case is when i = 2 and G has diameter 3.
Since G2 has more edges than G, Lovász’ result settles the matter completely.

For sc-graphs themselves, Müller [259] comes to our rescue, by showing
that a graph with n vertices andm edges is edge-reconstructible if 2m−1 > n!.
This means that the edge-reconstruction conjecture is true for all graphs with
|E(G)| ≥ 1

2

(

n
2

)

and n ≥ 12. Now McKay [249] showed that all graphs with
at most 11 vertices are reconstructible, and since all reconstructible graphs
are edge-reconstructible, his result fits nicely with that of Müller and Lovász
to give us:

Theorem. All graphs with at least n(n−1)/4 edges are edge-reconstructible.
In particular all sc-graphs and their squares are edge-reconstructible. ¤

4.36. What about the reconstruction conjecture for digraphs, hypergraphs
or infinite graphs? All of these have been shown to be false, in the sense that
there are infinite families of non-reconstructible digraphs, hypergraphs and
infinite graphs. The digraph counterexamples, found by Stockmeyer [363,
364], are especially interesting to us because they are either sc-tournaments,
or based on sc-tournaments. We describe them briefly here.

Definition. We say that a vertex vi dominates vertex vj, written vi → vj,
if there is an arc directed from vi to vj. A tournament is a digraph with
vertices {v1, . . . , vn} in which, for any i 6= j, either vi → vj or vj → vi, but
not both. The score of vi is the number of vertices that it dominates. We
call vi an odd [even] vertex if i is odd [even].

Definition. Any integer can be written uniquely as 2rs, for some r, s, where
s is an odd integer; we define pow(2rs) = r and odd(2rs) = s. In particular,
pow(−1) = 0 and odd(−1) = −1.
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Definition. For each integer of the form n = 2k, Tn is the tournament with
vertices {v1, . . . , vn} where, for i 6= j,

vi → vj iff odd(j − i) ≡ 1 (mod 4).

Since odd(j−i) = −odd(i−j), this rule defines exactly one arc between vi
and vj. We now list the properties that make these tournaments interesting.
For proofs, we refer to [363].

4.37. Theorem. For each integer n = 2k the following are true:

A. Tn is a sc-tournament, as the mapping ψ : vi ← vn+1−i reverses the
direction of all arcs.

B. The first n/2 vertices each have score n/2, while the remaining n/2
each have score n/2− 1.

C. The first n/2 vertices induce a copy of Tn/2, as do the last n/2 vertices.

D. Tn has only the identity automorphism.

E. For each integer i, with 1 ≤ i ≤ n, the tournaments Tn − vi and
Tn−vn+1−i are isomorphic. Moreover, there is an isomorphism between
them mapping all odd vertices onto even vertices, and vice versa.

F. Since Tn − vi ∼= Tn − vn+1−i, and (by A) Tn − vn+1−i ∼= T ′n − vi, each
vertex-deleted subtournament of Tn is a sc-tournament. ¤

4.38. It is clear from A that the two sets of odd and even vertices are
exchangeable in the sense of 1.37. We can thus form two non-isomorphic
sc-tournaments by adding a vertex v0; in An+1 the vertex v0 dominates the
odd vertices and is dominated by the even vertices, while in Bn+1 the vertex
v0 dominates the even vertices and is dominated by the odd vertices.

It is clear that An+1−v0 ∼= Tn ∼= Bn+1−v0, and that any isomorphism sat-
isfying E can be extended to an ismorphism from An+1−vi onto Bn+1−vn+1−i
for each integer i with 1 ≤ i ≤ n. Thus D(An+1) ∼= D(Bn+1); Stockmeyer
then proved that An+1 6∼= Bn+1, and therefore they form a non-reconstructible
pair of tournaments.
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We note that the first n/2 vertices and the last n/2 vertices of Tn also
form exchangeable sets; we can thus form two sc-tournaments by adding a
vertex v0 which either dominates or is dominated by precisely the first n/2
vertices. However, these tournaments will have different score sequences and
so, by Manvel [244], cannot have isomorphic decks.

In [364] Stockmeyer went much further, using the tournaments Tn to build
six non-reconstructible pairs of digraphs (including one pair of tournaments)
for each integer of the form n = 2k + 2m, with 0 ≤ m < k, k ≥ 2; and three
non-reconstructible pairs of digraphs for n = 2k. He noted that all known
non-reconstructible tournaments of odd order are self-complementary, while
the known even order counterexamples form complementary pairs; however,
the non-reconstructible digraphs do not show this pattern. Besides, each
of Stockmeyer’s counterexamples shows that Manvel’s result on degree-pair
sequences, cited above, cannot be extended to give the degree-pair of each
missing vertex individually.

4.39. Not only are Stockmeyer’s tournaments Bn and Cn self-complement-
ary, they also have a vertex-deleted sc-subtournament, each of whose sub-
tournaments are in turn also self-complementary. This is interesting because
of results obtained by other authors, which we describe below.

Definition. A transitive finite tournament has vertices {v1, . . . , vn} and
vi → vj iff i > j. The vertices v1 and vn are called the source and sink,
respectively. An almost transitive tournament is obtained from a transitive
tournament by reversing the arc joining sink to source.

We note that an infinite transitive tournament can be defined as above on
the vertex set {v1, . . .}; in this case, it will have a source but no sink. However,
we could also define a tournament on vertex-set {v1, . . .} ∪ {w1, . . .}, with v1
as source and w1 as sink, the arcs being

vi → vj iff i > j

vi → wj for all i, j

wi → wj iff i < j.

We can then form an infinite almost-transitive tournament by reversing the
arc from v1 to w1.
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Reid and Thomassen [319] characterised the strongly self-complement-
ary tournaments, those tournaments for which every sub-tournament is self-
complementary. They showed that these are just the finite transitive and
almost-transitive tournaments, and five tournaments of order 5, 6 and 7.

Trotter (unpublished) defined two tournaments T , U , on the same vertices
to be hereditarily isomorphic if any subset of the vertices induces two iso-
morphic subtournaments. Reid and Thomassen characterise all hereditarily
isomorphic tournaments, showing in particular that the strongly self-comple-
mentary tournaments, and the infinite transitive and almost-transitive tour-
naments, are the only hereditarily isomorphic tournaments such that T − U
is a spanning connected subgraph.

Let R1, R2 be two tournaments on the same set of n vertices, n ≥ 13
or infinite. Hagendorf and Lopez [169] showed that if, for any proper sub-
set S of the vertices, the induced sub-tournaments R1[S] and R2[S] are ei-
ther isomorphic or complementary, then R1 and R2 are also isomorphic or
complementary, and in fact the pairs of induced subtournaments are either
all isomorphic or all complementary.

Boudabbous and Boussairi [46] defined a tournament to be decomposable
if its vertex-set can be partitioned into A1, A2, with 1 < |Ai| < n, such that
every vertex in A1 dominates all the vertices of A2. They showed that for
a tournament T , if all sub-tournaments on n − 3 vertices are decomposable
and self-complementary then

A. if n ≥ 12 then T is transitive or almost-transitive

B. if n ≥ 14 then T can be reconstructed from its n− 3 subtournaments.

4.40. Kocay [224] described a novel way of treating the deck of a graph using
hypergraphs. Given a 3-uniform hypergraph H, and a vertex i ∈ V (H), the
set of hyperedges containing i define a graph Hi with V (Hi) = V (H) − i
and E(Hi) = {j, k}|{i, j, k} ∈ E(H)}. We say that Hi is subsumed by H.
There are two particularly interesting cases. The first is when the subsumed
graphs are all isomorphic, say Hi

∼= G for some fixed graph G, we say that
H subsumes G.

The second interesting case is when a set of graphs Gi form the set of
subsumed graphs of a hypergraph H, and also the deck of a graph G; that
is Hi

∼= Gi
∼= G − i for each i ∈ V (G) = V (H). In this case we say

that H subsumes D(G). We note that not all graphs are subsumed or have

124



their decks subsumed; and those which do may be subsumed by several non-
isomorphic hypergraphs. In any case, whether G or D(G) is subsumed does
not tell us whether G is reconstructible.

One of the limitations of this concept is that it does not apply to graphs
with the ’wrong’ number of vertices or edges. Since every edge {i, j, k} of a
hypergraph H will appear in the subsumed graphs Hi, Hj and Hk, we have
|E(H)| = 1

3

∑ |E(Hi)|. And since every edge {v, w} of a graph will appear
in all vertex-deleted subgraphs except G − v and G − w, we have |E(G)| =
1

n−2
∑ |E(G − i)| (Kelly’s Lemma). So for H to subsume D(G) we must

have |E(H)| = n−2
3
|E(G)|, and thus either n ≡ 2 (mod 3) or |E(H)| ≡ 0

(mod 3). It can be checked, however, that all sc-graphs satisfy these criteria.

By studying the Galois field GF (n) and its group of linear transforma-
tions, Kocay constructed a family of vertex-transitive, self-complementary
hypergraphs on 4k+1 vertices. By vertex-transitivity, the subsumed graphs
of each hypergraph are necessarily all isomorphic, say to some graph G on
4k vertices. It turns out that G is also self-complementary, its vertices form
exactly two orbits, and its deck is also subsumed by a hypergraph. Kocay
also showed that the Paley graphs Pn are subsumed by a hypergraph; and if
Pn − v is a vertex-deleted subgraph of Pn, then Pn − v and D(Pn − v) are
also subsumed by hypergraphs.

4.41. We have now seen quite a bit of the “non-standard” part of recon-
struction, and self-complementary graphs have not always been on the right
side. It is therefore good to end with another non-standard aspect of recon-
struction, in which sc-graphs might end up playing the role of the knight in
shining armour. Statman [362] showed that the Graph Reconstruction Con-
jecture is equivalent to a statement concerning self-complementary graphs.
If it can be proved that certain conditions imply self-complementarity, the
reconstruction conjecture for graphs would be true. It is a long shot, but
Statman’s work is interesting and we reproduce the relevant parts here.

Given a graph G on n vertices, the n-permutation tree TG is a directed
rooted tree with all arcs directed away from the root. The root is labelled
G and is joined to nodes labelled G − v1, G − v2, . . . , G − vn. In general
each node labelled with a subgraph G− [vi, . . . , vj] is joined to nodes labelled
G − [vi, . . . , vj, vk] for each vk 6∈ [vi, . . . , vj]. Note that the vertex sequences
are ordered, so there will be many nodes corresponding to the same subgraph
of G. We create n− 2 levels (apart from the root), so that the labels on the
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leaves correspond to pairs of vertices of G. Each leaf is then coloured 1 or 0
depending on whether there is an edge or non-edge between the corresponding
pair of vertices.

Two trees are said to be isomorphic if there is a bijection from one to the
other preserving adjacencies and colours. It is obvious that an isomorphism
between two graphs extends naturally to an isomorphism between their trees.
If, conversely, TG ∼= TH ⇒ G ∼= H, then we say that a G is recognizable from
its tree.

Note that, while we can use the labels to help define an isomorphism,
there is no need to do so, nor to preserve labels. For example, let us say
an isomorphism from TG1 to TG2 maps a node labelled G1 − [u1, v1] onto
a node labelled G2 − [u2, v2]. To preserve adjacencies, any node labelled
G1 − [u1, v1, w] must be mapped onto a node labelled G2 − [u2, v2, z] for
some z. But the node labelled G1 − [v1, u1] could very well be mapped onto
G2 − [x2, y2], where x2 6= v2 and y2 6= u2.

Theorem. The following are equivalent:

A. All graphs are reconstructible from their decks.

B. All graphs are recognizable from their trees.

Proof: Let B be true. Then given the deck of a graph G we can construct
the trees TG−v1 , TG−v2 , . . . , TG−vn . If we now create a root node and join it
to the roots of the n trees, we obtain TG, and thus uniquely identify G.

Now let A be true. We prove B by induction on n. A 2-permutation tree
TG has a single node which is coloured 1 iff G ∼= K2 and 0 iff G ∼= K2. So
let any graph on n ≥ 2 vertices be recognizable from its tree. Then if we
are given an n + 1-permutation tree TG, each n-permutation sub-tree will
identify a subgraph G − vi of G up to isomorphism. We can thus find the
deck of G and, by A, reconstruct G uniquely. ¤

Note that the theorem does not say that if a specific graph G is recon-
structible then it is also recognizable from its tree. To recognize a graph
we have to reconstruct recursively the deck of G before we can reconstruct
G itself. So the reconstruction conjecture would have to be true for all the
induced subgraphs of G.

4.42. Theorem. The following statements are equivalent:
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A. The Graph Reconstruction Conjecture is true.

B. A graph G is self-complementary if and only if TG ∼= TG.

Proof: If A is true, then B follows from Theorem 4.41. We will show that
if A is false, then there is a graph P 6∼= P such that TP ∼= TP .

If the graph reconstruction conjecture is false, then by Theorem 4.41
there are two graphs G 6∼= H such that TG ∼= TH . Note that if τ : TG ∼= TH
is an isomorphism; then τ−1 will also be an isomorphism from TH onto TG.
Moreover, τ induces an obvious bijection from ordered sequences of vertices
of G, [u1, . . . , ui], onto ordered sequences of vertices of H.

Let P = P(G,H) be the P4-join of (G,H,H,G) (see Figure 4.3). Since
G and H are not isomorphic, P will not be self-complementary (see 4.8).
For convenience the vertices of G, H, H and G are labelled ui, vi, wi and xi
respectively. We define a function τ ′ which maps a node labelled

P − [u1, . . . , uj, v1, . . . , vk, w1, . . . , wl, x1, . . . , xm]

onto a node labelled

P − [τ([u1, . . . , uj]), τ
−1([v1, . . . , vk]), τ

−1([w1, . . . , wl]), τ([x1, . . . , xm])].

If the ui’s, vi’s, wi’s and xi’s are interspersed, the mapping is defined similarly.
It is not difficult to check that τ ′ : TP → TP is an isomorphism. ¤

Codes and information

4.43. This section is mainly concerned with Kratochv́ıl’s [229] results on
codes over sc-graphs. There have been very few other contributions regarding
self-complementary graphs in this area. Lovász [241] has shown that the
Shannon zero-error capacity of a vertex-transitive self-complementary graph
on n vertices is exactly

√
n; and Marton produced a related probabilistic

bound in [245].

4.44. We recall that d(u, v) denotes the distance between two vertices. The
closed neighbourhood N [v] consists of v and all its neighbours. A 1-perfect
code C in a graph G is a set of code-vertices whose closed neighbourhoods
partition V (G). In other words,
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A. no two code-vertices are adjacent, and

B. each vertex not in C is adjacent to exactly one code-vertex.

This implies that for any two vertices u, v ∈ C, d(u, v) ≥ 3.
The Cartesian square of a graph G is defined by

• V (G[2]) = V (G)× V (G)

• (u1, v1) ∼ (u2, v2) iff

{

u1 = v1 and u2 ∼ v2 in G, or
u2 = v2 and u1 ∼ v1 in G.

The usual way of visualising this is as a square grid of vertices where each
row or column induces a graph isomorphic to G. A permutational code in
G[2] is a code with exactly one code-vertex in each row and column; such a
code must have size |V (G)|.

Another useful way of defining the edge-set of G[2] is as follows:

d((u1, v1), (u2, v2)) = d(u1, u2) + d(v1, v2).

With these definitions, we now turn to Kratochv́ıl’s results [229, 230].

4.45. Proposition. If G is a self-complementary graph on n vertices, then
G[2] contains a (permutational) 1-perfect code of size n.

Proof: Let σ be an antimorphism of G, and define C = {(u, σ(u))|u ∈
V (G)}. Since σ is a bijection, C will be a permutational 1-perfect code. ¤

4.46. Proposition. For any graph G on n vertices, if C is a 1-perfect code
in G[2] then |C| ≥ n.

Proof: Suppose there is a vertex u0 ∈ V (G) such that, for all v ∈
V (G) (u0, v) 6∈ C. But any vertex (u0, v) ∈ V (G[2]) must be adjacent
to some code-vertex. So for each v ∈ V (G) there is a vertex uv ∈ V (G) such
that (uv, v) ∈ C, and thus |C| ≥ n. ¤

4.47. So 4.45 shows that the Cartesian square of self-complementary graphs
achieve the lower bound of 4.46, using a permutational code. 1-perfect codes
exist in Cartesian squares of non-self-complementary graphs, e.g. 1-perfect
Lee-error correcting codes over C

[2]
5k . But we now show that if G has diameter
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2, or if the 1-perfect code is permutational, or attains the lower bound of 4.46,
then G must be self-complementary.

4.48. Lemma. A permutational 1-perfect code C exists in G[2] if and only
if G is self-complementary.

Proof: The “if” part follows from Proposition 4.45.
If C is a permutational code in G[2], there is a permutation σ of the

vertices of G, such that C = {(u, σ(u))|u ∈ V (G)}. Take any pair of distinct
vertices u, v. If, moreover, C is 1-perfect we have

3 ≤ d((u, σ(u), (v, σ(v)) = d(u, v) + d(σ(u), σ(v))

so if u ∼ v then σ(u) 6∼ σ(v). On the other hand, (u, σ(v)) is not in C and
so it must be adjacent to some code-vertex (z, σ(z)). But then, either u = z
and σ(v) ∼ σ(z); or σ(v) = σ(z), that is v = z, and u ∼ z. So if u 6∼ v then
σ(u) ∼ σ(v), and σ is then an antimorphism for G. ¤

4.49. Lemma. If a 1-perfect code C exists in G[2], where diam(G) = 2,
then C is permutational and G is self-complementary.

Proof: Since diam(G) = 2, no row or column of G[2] may contain more
than one code-vertex, otherwise we would have two code-vertices at distance
at most 2. But by 4.46 |C| ≥ |V (G)|, so every row and column must contain
exactly one code-vertex. C is thus permutational and by 4.48 G is self-
complementary. ¤

4.50. Theorem. A 1-perfect code C of size |V (G)| exists in G[2], if and
only if C is permutational and G is self-complementary.

Proof: The “if” part follows from Proposition 4.45.
Now let C be a 1-perfect code in G[2] of size |V (G)|. If C is permutational

the result follows from 4.48.
If C is not permutational then, since it has size |V (G)|, there must be

some vertex u0 ∈ V (G) such that, for all v ∈ V (G), (u0, v) 6∈ C (or some
vertex v0 such that (u, v0) 6∈ C for all u ∈ V (G); the treatment is entirely
analogous). But any vertex (u0, v) ∈ V (G[2]) must be adjacent to some
code-vertex. So for each v ∈ V (G) there is a vertex uv ∈ V (G) such that
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(uv, v) ∈ C and u0 ∼ uv. Since |C| = |V (G)|, each uv must be unique.
Denote A = {uv|v ∈ V (G)}; obviously A is not empty, but u0 6∈ A.

Now for any u 6∈ A and v ∈ V (G) we have (u, v) 6∈ C (otherwise u = uv ∈
A), and a code-vertex (x, y) exists such that (u, v) ∼ (x, y). Since (u, y) 6∈ C
we have u 6= x and so v = y, x = uv and u ∼ uv. As v runs through V (G), uv
runs throughout A, and so for any u 6∈ A and w ∈ A we have u ∼ w. Since
∅ 6= A 6= V (G), it follows that diam(G) = 2 and thus C is permutational
after all. ¤
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Chapter 5

Generalisations of
self-complementary graphs

5.1. The idea of splitting a graph into isomorphic subgraphs is quite natural
and there are a number of concepts which are similar in spirit to the self-
complementary graphs. Suprunenko [367], for example, constructed a class
of 3-uniform sc-hypergraphs. Kocay [224] constructed a similar class, this
time vertex-transitive, and proved that a permutation is the antimorphism
of some 3-uniform sc-hypergraph if and only if

A. every cycle has even length, or

B. there are either one or two fixed points, and all other cycles have length
a multiple of 4.

So 3-uniform sc-hypergraphs on n vertices exist if and only if n 6≡ 3 (mod 4).
The rest of this chapter is concerned with structural results like this.

There is also a number of related enumeration results in Chapter 7, because
duality properties of all kinds generally make structures amenable to count-
ing.

Self-complementary and self-converse digraphs

5.2. One of the most natural generalisations of self-complementary graphs
is to consider self-complementary digraphs, and in fact they are mentioned
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several times in other chapters. Another related concept is the self-converse
digraphs. The converse D′ of a digraph D is obtained by reversing all the
arcs of D; if D′ ∼= D, we say that the digraph is self-converse.

We summarise here results given in other parts of the thesis, and present
some other theorems on the structure of self-complementary and self-con-
verse digraphs. The self-converse and self-complementary digraphs of order
3 are shown in Figures 5.1 and 5.2, respectively. Note that even on 3 vertices
and

(

3
2

)

arcs there are already digraphs that are self-converse but not self-
complementary; however, every self-complementary digraph is easily seen to
be self-converse.

Figure 5.1: The self-converse digraphs of order 3

Every self-complementary graph can also be considered as a self-comple-
mentary digraph if we replace each edge by a pair of symmetric (i.e. opposite)
arcs; we call these the symmetric self-complementary digraphs. Of course
these graphs, when considered as digraphs, are also self-converse, but then
every graph is. In particular, the null and complete digraphs are self-con-
verse, and this already hints that the class of self-converse digraphs is rather
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Figure 5.2: The self-complementary digraphs of order 3

too wide to be of interest. It would be interesting to have some results on
self-dual digraphs — those which are both self-complementary and self-con-
verse — but so far there are none to speak of; even their enumeration has
proved to be too difficult because it involves two dualities (see 7.38).

It is interesting to note, though, that the converse and complement op-
erations commute [174], that is, D

′
= D′, and so we have the following

result [180]:

A. A digraph is self-complementary if and only if its converse is.

B. A digraph is self-converse if and only if its complement is.

However, Cavalieri d’Oro’s claim [65] that D ∼= D′ ⇔ L(D) ∼= L(D′) is
not true, as can be seen by taking a star with all arcs pointing inward; this
is not self-converse, but its line digraph, and the line digraph of its converse
are both null.

Since the complement and converse of a tournament are the same thing,
the concepts of ‘self-complementary tournament’, ‘self-converse tournament’
and ‘self-dual tournament’ coincide, and we call them just sc-tournaments.
They are also the self-complementary oriented graphs, under another name.

The most obvious sc-tournaments are the transitive tournaments, in which
vertex i dominates vertex j if and only if i > j. These tournaments exist
for every integer n, which thus settles the existence question for self-comple-
mentary and self-converse digraphs.

5.3. The antimorphisms of all these types of graphs were characterised
in 4.12–4.14, where there are also some remarks on self-converse digraphs:

Theorem. Let π be a permutation of n vertices. Then

A. π is an antimorphism of some self-converse digraph.
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B. π is an antimorphism of some sc-digraph if and only if it has at most
one fixed vertex and all other cycles have even length.

C. π is the antimorphism of some sc-tournament if and only if it consists
of cycles of even length l 6≡ 0 (mod 4), and at most one fixed vertex. ¤

Parts A, B, F, G, H of Theorem 1.29 hold for all these antimorphisms.
In particular, if σ is an antimorphism of a self-complementary or self-con-
verse digraph, then for any integer i, σi is an antimorphism [automorphism]
whenever i is odd [even], and there is a bijection between antimorphisms and
automorphisms of the digraph.

The sets of antimorphisms and automorphisms of a digraph are generally
disjoint, except when a graph G is considered as a self-converse digraph, in
which case the two sets are equal. We note, however, that if G is also a
self-complementary digraph, then the set of permutations taking G to its
complement is disjoint from the set of those taking G to its converse; this is
true of all self-dual digraphs except for sc-tournaments, in which case the two
sets are obviously equal. We call both types of permutations antimorphisms,
as it is always clear from the context which type we mean.

5.4. What can we say about the order of the antimorphisms and automor-
phisms of these digraphs. In particular, do they have involutory antimor-
phisms (that is, antimorphisms of order 2), and non-trivial automorphisms?
For sc-graphs the answers are, respectively, ‘No’ and ‘Yes’.

Let us now look at an arbitrary self-converse digraph D. The order of an
antimorphism σ of D can be written as 2s(2t+ 1) for some t. Now, if s = 0
then σ2t+1 is just the identity permutation, which means that D is its own
converse; this happens if and only if D is symmetric, that is, D is essentially
a graph.

If D is not symmetric, then s ≥ 1 and so, by previous results, σ2t+1 is a
non-trivial antimorphism of order 2s, while σ2(2t+1) is a non-trivial automor-
phism of D. Further, if s = 1 then σ2t+1 is an involution, while if s ≥ 2 then
σ2

s−1(2t+1) is an involutory automorphism.

In both cases (s = 1 and s ≥ 2), the symmetric digraph D ∪D′, otained
by superimposing D and its converse (possibly giving multiple edges), has
σ2

s−1(2t+1) as a non-trivial involutory automorphism. So the underlying graph
of D also has an involutory automorphism.

Now, for self-complementary digraphs we must have s ≥ 1, so the same
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arguments hold as above (though of course we are talking about a different
kind of antimorphism).

For a sc-tournament smust always be exactly 1, so it must have an involu-
tory antimorphism; it is also evident that no tournament can have an involu-
tory automorphism. We collect these results, all due to Salvi-Zagaglia [343],
below:

Theorem. Let D be a self-complementary or non-symmetric self-converse
digraph. Then D has a non-trivial antimorphism whose cycle lengths are
all powers of 2, while the underlying graph of D has an involutory automor-
phism. D itself must have either an involutory antimorphism or an involutory
automorphism. If D is a sc-tournament, it must have an involutory antimor-
phism, but no involutory automorphism. ¤

This theorem is “best possible”, in the following sense —

• Salvi-Zagaglia showed by an example that there are self-converse di-
graphs with no involutory antimorphisms, contrary to a claim made by
Cavalieri d’Oro [65] (see Figure 5.3)

4

6

7

8

1

2

5

3

Figure 5.3: A self-converse digraph with no involutory antimorphism
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• it is evident that a transitive tournament has trivial automorphism
group, because each vertex has a unique out-degree

• Robinson [324] also gave an example of non-transitive sc-tournament
with a trivial automorphism group (Figure 5.4).

Figure 5.4: A sc-tournament with trivial automorphism group

5.5. In 1.34 we saw that for a sc-graph G the set F (G), of vertices which
are fixed by some antimorphism, forms an orbit under the automorphism
group of G, a result first proved by Robinson [321]. The proof depends on
the structure of antimorphisms of sc-graphs, and so does not carry over to
sc-digraphs in general.

Eplett [112] proved a similar result for sc-tournaments using properties
of Sylow groups; again, the proof does not extend to sc-digraphs.

However, Robinson [324] showed that his original result is valid for sc-
digraphs too. He stated his result in the following interesting form — a
self-complementary digraph G on 2k + 1 vertices has a unique rooted self-
complementary version (up to isomorphism). We give the proof here because
it includes the other two results as special cases. As in Chapter 1 we use
u

α→ v to mean that u and v are in the same orbit, and α is an automorphism
such that α(u) = v. We also use Ov and Av to denote the orbit and stabiliser
of a vertex v, respectively. In the theorem below we deliberately omit any
reference to the order of D, because when |V (D)| is even, F (D) will be empty
but the results still hold.
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5.6. Theorem. For a self-complementary digraph D, the set F (D) forms
an orbit under A(D). All antimorphisms permute the orbits of D, and F (D)
is the unique orbit which is fixed by any (and every) antimorphism.

Proof: Claim 1: An antimorphism σ maps orbits into orbits. For if u,w,
are two vertices in the same orbit, say α(u) = w, then σα(u) = σ(w). But
β := σασ−1 is an automorphism, and βσ(u) = σα(u) = σ(w), so σ(u) and
σ(w) are also in the same orbit.

Claim 2: For any antimorphism σ and any vertex v, σOv = Ov ⇔ v ∈
F (D). For, if σ(v) = α(v) for some automorphism α, then α−1σ is an anti-
morphism, and α−1σ(v) = v. Conversely, if µ(v) = v for some antimorphism
µ, then σ(v) = σµ(v), which is in the orbit of v since σµ is an automorphism.

So F (D) is just the union of the orbits which are fixed by any antimor-
phism; we will now show that it fixes just one orbit. Consider the set of
ordered pairs

S = {(v, σ)|v ∈ V (D), σ ∈ A(D), σ(v) = v}.
Since each antimorphism has exactly one fixed vertex,

|S| = |A(D)| = |A(D)|.
The vertices which appear in some ordered pair of S are just the vertices

of F (D), but they may appear in more than one ordered pair. Let x be some
vertex of F (G), say τ(x) = x for some τ . Then the ordered pair (x, τα)
appears in S if and only if

τα(x) = x⇔ α(x) = τ−1(x) = x⇔ α ∈ Ax
where Ax denotes the stabiliser of x. So each vertex x ∈ F (G) appears in
exactly |Ax| pairs.

Now let z be an arbitrary but definite vertex of F (D). By claim 2, all the
vertices of its orbit Oz appear in some ordered pair of S; since the stabilisers
of each such vertex have equal size, and each vertex x ∈ Oz appears in
|Ax| pairs, the vertices of Oz account for |Oz| · |Ax| pairs, and by the Orbit-
Stabiliser theorem they account for all the pairs of S and, thus, all the vertices
of F (G). ¤

5.7. Robinson’s theorem allows us to prove the analogue of Rao’s theo-
rem [306] for digraphs. As in Chapter 1,

N(D) := {(u, v) ∈ E(D)|∃σ ∈ A(D), σ(u) = v}.

137



A regular digraph of degree r is one where every vertex has both indegree
and outdegree equal to r.

Theorem. Let D be a self-complementary digraph. Then the orbits of D
can be numbered V1, V2, . . . , V2s if n = 2k, or V0, V1, V2, . . . , V2s if n = 2k + 1
such that1:

A. |V0| = 2t+ 1 for some t;

B. σ(V0) = V0 and σ(Vi) = V2s+1−i for any antimorphism σ;

C. D[V0] is a regular sc-subgraph (of degree (|V0|−1)/2, and D[Vi, V2s+1−i]
is a regular bipartite self-complementary subgraph (of degree |Vi|/2) for
all i ≥ 1.

D. F (D) = V0.

E. N(D) = E[V0] ∪
⋃s
i=1E[Vi, V2s+1−i].

Proof: Robinson’s theorem tells us that F (D) is an orbit, proving D. Now
σ maps orbits onto orbits, but only maps F (D) onto itself; and since σ2 is
an automorphism, the mapping on orbits must be an involution; B, C and
E then follow (we omit the routine details). This also proves that there are
an even number of orbits apart from F (D), and since |Vi| = |V2s+1−i| but
|V (D)| is odd, we must have |F (D)| odd, establishing A. ¤

5.8. It is evident that, for any self-complementary digraph D on 2k + 1
vertices, and for any vertex v ∈ F (D), D − v is a self-complementary sub-
digraph which is fixed by some antimorphism of D; we call it a maximal fixed
subgraph of D. Actually, we can call it the maximal fixed subgraph of D,
because the theorem ensures that any two maximal fixed subgraphs of D are
isomorphic. However, there can be two non-isomorphic sc-digraphs whose
maximal fixed subgraphs are isomorphic.

We note that the representation used by Molina to generate odd order
sc-graphs can be extended to sc-tournaments, but not to sc-digraphs in gen-
eral. If v is a fixed vertex of a sc-digraph D on 2k + 1 vertices, its out-
neighbourhood A and in-neighbourhood B must contain k vertices each, but

1The results and proofs are stated for n = 2k + 1. The case n = 2k is analogous and
simpler, as any references to V0 or fixed vertices should just be ignored. See Figure 1.6 for
an illustration.
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it is only when D is a tournament that A and B are necessarily distinct.
Then, if τ is an antimorphism fixing v, we have τ(A) = B and τ(B) = A,
so B = A. Thus, an odd-order sc-tournament can be represented by a sub-
tournament A, and the bipartite sc-tournament C which joins A to B. As
with Molina’s representation, though, this one does not distinguish between
sc-tournaments — there might be two non-isomorphic sc-tournaments with
isomorphic representations.

5.9. As in 1.40 we can use the fact that F (D) is an orbit of D to set up some
natural bijections. An antisymmetric relation is just a tournament with at
most one loop at each vertex. An self-complementary antisymmetric relation
must then have 2k vertices and exactly k loops; moreover the vertices with
and without loops form two exchangeable sets A, B, which we can distinguish
unambiguously. So, removing the loops and adding a new vertex v which is
dominated by the vertices of A and dominates the vertices of B, we get a
unique sc-tournament on 2k + 1 vertices. Conversely, for any sc-tournament
T we can take a vertex v ∈ F (T ) and repeat the process, and since the
vertices in F (T ) are in the same orbit this gives us a unique self-complement-
ary antisymmetric relation on 2k vertices. This proves one of the identities
of 7.11.

5.10. A digraph is said to be transitive if, whenever there are arcs (a, b)
and (b, c), there is also an arc (a, c). There is a unique transitive tournament
on n vertices, and it is always self-complementary. For digraphs in general,
Hegde, Read and Sridharan [202] showed that the transitive self-complement-
ary digraphs on an even number of vertices can be constructed as follows:

• take the transitive tournament with vertices {1, 2, . . . , 2k}, for some k,
where i dominates j if and only if i > j;

• for each i, 1 ≤ i ≤ k, arbitrarily choose a positive integer ni;

• choose whether to replace vertex i by a null or complete digraph Dni

on ni vertices;

• replace vertex 2k + 1− i by Dni ;

• replace all arcs of the original tournament by bundles of arcs joining
every vertex of Dni to Dnj , for i ≥ j.
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The odd-order transitive sc-digraphs are obtained from the even-order
ones by adding a vertex which dominates the Dn1 , . . . , Dnk , and is dominated
by Dnk+1

, . . . , Dn2k
. So the number of transitive sc-digraphs on 2n vertices

is the same as the number of such digraphs with 2n + 1 vertices. By the
construction algorithm above, it is also equal to

∑

f(n1)f(n2) . . . f(ns)

where the summation is over all positive integers ni which sum to n, f(ni) = 1
if ni = 1, and f(ni) = 2 if ni > 1. This gives us the enumeration formulas
of 7.36.

5.11. Zelinka [405] defined a curious type of equivalence between digraphs.
Two digraphs D1 and D2 are said to be isotopic if there are two bijections
f, g, both mapping V (D1) onto V (D2), such that

∀u, v ∈ V (D1), (u, v) ∈ E(D1)⇔ (f(u), g(v)) ∈ E(D2).

He then showed that any isotopy between a (possibly infinite) digraph D and
its complement must in fact be an isomorphism, that is f = g, and so D is
self-complementary. However, if we consider the complete digraph with one
loop attached to each vertex, then we can only say that there is a digraph
isotopic to its complement if and only if at least one of f or g has cycles of
only even or infinite length.

5.12. Self-complementary and self-converse digraphs are mentioned in a
number of other places in this thesis. For results regarding line-digraphs
see 1.55. There are some results on circuits and Hamiltonicity in self-comple-
mentary digraphs and tournaments in 2.24–2.30. Chapter 3 is mostly con-
cerned with regular self-complementary digraphs and tournaments. The
equivalence of the digraph [tournament] isomorphism problem and the corre-
sponding problem for self-complementary digraphs [tournaments] is proved
in 4.5–4.7. See 4.25, 4.27, 4.36–4.39 for results on the subgraphs (self-comple-
mentary or otherwise) of a sc-digraph, and the reconstruction conjecture.

For degree sequences, see 6.6, 6.7, 6.8, 6.11, 6.12, 6.23. For enumeration
results, see Chapter 7. There is a well-known equality between the number
of sc-digraphs on 2k vertices, and the number of sc-graphs on 4k vertices,
but no explicit bijection is known.
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Multipartite self-complementary graphs

5.13. Let P be a partition P = ∪ri=1Ai of n vertices, and call the Ai’s
classes. An r-partitioned graph (G,P ) is a graph G, such that each edge
vw of G has vertices in different classes of P . We say that G is an r-partite
graph. An isomorphism of two r-partitioned graphs (G1, P1), (G2, P2) is just
an isomorphism of G1 and G2; it need not preserve partitions. The complete
multipartite graph with partition P will be denoted by (K,P ), while the r-
partite complement (K,P )− (G,P ) is denoted by (G,P ). The complement
of an r-partite graph is not always unique, as it depends on the partition;
that is, we might have (G,P1) 6∼= (G,P2) for some partitions P1, P2.

In fact [152] the only graphs H for which

G1
∼= G2 ⇒ H −G1

∼= H −G2,

for any subgraphs G1, G2 ⊆ H, are rK1,n, rK3, Kn, C5, and Kn,n for some
integers r and n.

When we are not particularly interested in a specific partition, but just
want to emphasise that the graph has r classes, we denote it by G(r), and
its r-partite complement by G(r).

An r-partitioned graph (G,P ) which is isomorphic to (G,P ) is called an
r-partitioned self-complementary graph, or a graph self-complementary with
respect to (K,P ). We call G an r-partite self-complementary graph, or r-
psc-graph. For bipartite and tripartite self-complementary graphs we use the
abbreviations bipsc-graphs and tripsc-graphs, respectively.

5.14. Observations. A sc-graph with respect to Kn1,...,nr has 1
2

∑

i>j ninj
edges, and so we must have

∑

i>j ninj even. Thus, for bipsc-graphs at least
one of n1, n2 must be even, while for tripsc-graphs at least two of n1, n2,
n3 must be even. In general, if there are exactly t classes of odd order, this
means that t ≡ 0 or 1 (mod 4). This generalises Lemma 1.2.

When G is uniquely r-colourable, then we do not have to specify the
partition, or even the sizes of the classes. In particular, connected bipartite
graphs have a unique bipartite complement. Quinn [291] proved a stronger
result, that for a given graph G self-complementary with respect to Km,n, the
factorisation of Km,n into copies of G is unique up to automorphisms of Km,n.
It is natural to ask whether this is true in general: given two r-partitioned
self-complementary graphs (G1, P1), (G2, P2) if G1

∼= G2 must P1 and P2 also
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be “isomorphic”? Or could there be, say, a class in P with some distinctive
property (e.g. having exactly k vertices, or having two vertices of the same
degree s), but no class in Q with the same property?

A self-complementary graph on n vertices is also an n-partite sc-graph
and, of course, it is uniquely n-colourable, so this concept includes the usual
sc-graphs.

We note that an r-psc graph can be disconnected. For example, 2Kn,n

is a bipsc-graph, and in general 2Kn1,...,nr is self-complementary with respect
to K2n1,...,2nr .

We also note a useful way of constructing successively larger multipartite
sc-graphs: given an r-psc-graph G on n vertices, we replace each vertex with
a copy of Kk, and each edge with a copy of Kk,k. This gives us an r-psc
graph on kn vertices, which we call the k-clone of G.

5.15. Self-complementary graphs have too many edges to be planar, r-
partite or trees (with a finite number of exceptions in each case), as we saw
in Chapter 1. Some analogous results are proved in [149]. We note that a
cactus is a connected graph whose blocks are either K2’s or cycles.

A. Let (G,P ) be an r-partitioned graph, each of whose components is
either a tree or a unicyclic graph. Then G is r-psc if and only if it is
a bipartitioned graph with one class of size at most 2; one of 20 bipsc-
graphs and 14 tripsc-graphs on at most 9 vertices; or one of the small
sc-graphs (P4, C5, or the A-graph) considered as a 4- or 5-psc-graph.

B. Let G be an r-psc cactus. Then G is one of 22 bipsc-graphs and 20
tripsc-graphs on at most 11 vertices, or the small sc-graphs mentioned
in A.

r-partite antimorphisms

5.16. An isomorphism between G and its r-partite complement is called an
r-partite antimorphism, or just antimorphism if there is no ambiguity. As
usual, an antimorphism is expressed as the product of disjoint cycles:

σ = σ1 · · · σs.
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A cycle σi is said to be pure if its vertices are all in the same class; otherwise
we say that σi is mixed. If all the cycles are pure [mixed] then we say that
σ is a pure [mixed] antimorphism. We denote the set of antimorphisms of G
by A(G), and the set of pure [mixed] antimorphisms by Ap(G) [Am(G)].

When there is no ambiguity, we call these three sets of antimorphisms
just A, Ap and Am.

For each cycle τ , we define Iτ to be the set of classes of P which intersect
στ . So τ is pure if |Iτ | = 1 and mixed if |Iτ | > 1.

5.17. If {σα, . . . , σλ} is a set of cycles of an antimorphism σ, and if these
cycles collectively intersect exactly k classes, then the subgraph induced by
their vertices is a k-psc-graph, with antimorphism σ ′ := σalpha · · · σλ.

This implies [149, Thm. 1.6.1] that all the odd length pure cycles of σ
must be subsets of the same class; for if any two such cycles were in different
classes, they would induce a bipsc-graph with both classes containing an odd
number of vertices, which is not possible.

5.18. It is important to note that the results of 1.29 do not necessarily hold
for r-partite antimorphisms. To see why, let (G,P ) be an r-partitioned graph
on n vertices, and colour the edges of Kn blue if they correspond to edges of
(G,P ), red if they are edges of (G,P ), and green otherwise. The green edges
correspond to the non-edges of (K,P ).

An r-partite antimorphism σ must map the blue edges onto red edges,
but the red edges may be mapped onto either blue or green edges. Similarly,
an automorphism α of G will map blue edges onto blue edges, but red edges
need not map onto red edges.

The problem in both cases is that green edges do not always map onto
green edges. We therefore define an antimorphism or automorphism of an
r-partitioned graph (G,P ) to be periodic if it maps each Ai into some Aj
(possibly i = j). In fact, this implies that each Ai is mapped onto some Aj:

Lemma. For any permutation π of the vertices of a complete multipartite
graph (K,P ), the following are equivalent:

A. π permutes the classes of (K,P );

B. π is periodic;

C. π maps green edges onto green edges.
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Proof: That A ⇒ B ⇒ C follows from the definitions. Now let π be a
permutation mapping green edges onto green edges; then, because there is a
finite number of them, π must permute the green edges among themselves.
So any two vertices v and w are in different classes if and only if vw is a
green edge, if and only if π(v)π(w) is green, if and only if π(v) and π(w) are
in different classes. Thus C ⇒ A. ¤

So the antimorphisms [automorphisms] which map red edges onto blue
[red] edges are precisely the periodic ones. Then parts A, B, F, G, H of Theo-
rem 1.29 hold for periodic antimorphisms and automorphisms. In particular,
if σ is a periodic antimorphism then σ−1 is also a (periodic) antimorphism,
while σ2 is a (periodic) automorphism; and there is a bijection between pe-
riodic antimorphisms and periodic automorphisms of an r-partitioned sc-
graph.

The set of periodic antimorphisms [automorphisms] is denoted by A∗(G)
[A∗(G)], and obviously Ap(G) ⊆ A∗(G).

5.19. A cycle τ of an antimorphism is said to be k-periodic if it is of the
form

(u11u21 . . . uk1u12u22 . . . uk2 . . . u1αu2α . . . ukα)

where upq ∈ Aip for all p, and ip, ip′ are distinct indices for p 6= p′. The cycles
of a periodic antimorphism have a nice periodic structure, as we shall see:

Proposition[Gangopadhyay and Rao Hebbare 1982]. Let σ be a periodic
antimorphism of an r-partitioned graph (G,P ). Let τ be a cycle of σ with
|Iτ | = k. Then

A. the cycle τ is k-periodic;

B. if ψ is any other cycle of σ with Iψ ∩ Iτ 6= φ, then (1) Iψ = Iτ and (2)
ψ intersects the classes of Iψ = Iτ in the same order as τ ;

C. let |τ | = kα, k ≥ 2; if α is odd, then k ≡ 0 (mod 4).

Proof: Let τ be (v1v2 . . . vm), arranged so that for some t, v1, v2, . . . , vt
is a sequence of vertices in distinct classes Ai1 , Ai2 , . . . , Ait , and vt+1 is in
Ai1 . Since σ is periodic we have σ(Aip) = Aip+1 for 1 ≤ p ≤ t − 1, and
σ(Ait) = Ai1 . Since τ is a cycle and |Iτ | = k, we must have t = k. Thus τ is
k-periodic, and part B follows easily.
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For part C we note that τ induces a k-psc-graph, k ≥ 2, where each class
is of size α, so it follows from 5.14 that k ≡ 0 or 1 (mod 4). But if k ≡ 1
(mod 4), then kα is odd, and τ kα = id is an antimorphism of this non-trivial
induced graph, which is not possible. ¤

5.20. Corollary. Let (G,P ) be an r-partitioned sc-graph with some periodic
antimorphism σ. If τ is a cycle of σ, and Ai, Aj ∈ Iτ , then |Ai| = |Aj|. ¤

Bipartite self-complementary graphs

5.21. The bipsc-graphs are the simplest r-psc-graphs, and in fact we know
quite a bit about them. Gangopadhyay characterised their degree sequences
completely, and Quinn counted the number of small bipsc-graphs; see 6.19
and 7.37, respectively, for these results. These two authors also proved the
following, independently:

Proposition[Quinn 1979, Gangopadhyay and Rao Hebbare 1982]. Let G be
a connected bipsc-graph with classes A and B. Then

A∗(G) = A(G) = Ap(G) ∪ Am(G).

Further, if σ ∈ Am(G) and τ is a cycle of σ, then the length of τ is a multiple
of 4 and τ takes vertices alternately from A and B. ¤

Proof: Let v be any vertex in A. Then, since G is connected, every other
vertex w is at a finite distance from v; moreover, d(v, w) is odd if and only
if w ∈ B, and even if and only if w ∈ A. So if an antimorphism maps v from
A to B, then all the vertices of A must map to B, and all those of B must
map to A, in order to preserve (the parity of) their distances from v. So the
cycles of any automorphism must be either all pure or all mixed, and in both
cases we get a periodic antimorphism; this proves the first part.

Now, if G is any bipsc-graph (connected or otherwise) with an antimor-
phism σ mapping A to B and vice versa, it is obvious that the vertices of
A and B must alternate in each cycle; and that |A| = |B| = 2k, for some
k, so the number of vertices must be a multiple of 4. Now, any cycle τ of
σ induces a bipsc-graph with an antimorphism which interchanges the two
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classes, so the number of vertices in τ must also be a multiple of 4. ¤

5.22. The result on cycle lengths was proved by Molina [255] for any bipartite
antimorphism which interchanges the two classes — that is, mixed periodic
antimorphisms.

We note that a connected bipsc-graph might have only pure antimor-
phisms — consider the path of length 6, for example, and all its k-clones. It
might also have just mixed antimorphisms, as with the graph of Figure 5.5,
and all its k-clones.

Figure 5.5: A bipsc graph with only mixed antimorphisms

We also note that it follows from Ding [107, Thm. 4.2] that a connected
bipsc-graph must contain an induced P7, J1 or J2, where P7 is the path of
length six (see Figure 5.8), and J1 and J2 are the graphs in Figure 5.6.

Figure 5.6: J1 and J2
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5.23. The situation for disconnected bipsc-graphs is different. We cannot
split their antimorphisms neatly into pure and mixed — the graph 2K2, with
classes {a, b}, {c, d} and edges ac, bd, has an antimorphism (abd)(c). Also,
the graph with classes {a}, {b, c}, and edge-set ac has an antimorphism (abc)
which is mixed but not periodic. These two graphs (and their k-clones) show
that Proposition 5.21 cannot be extended to disconnected bipsc-graphs.

However, we can give a complete characterisation of these graphs. First,
we have this result of Gangopadhyay [134]:

Theorem. The disconnected bipsc-graphs without isolated vertices are pre-
cisely the graphs of the form Ka,b ∪Ka,c, for any integers a, b, c. ¤

Quinn [291] and Gangopadhyay [134] independently proved that a dis-
connected bipsc-graph must have a pure antimorphism. This allows us to
characterise those disconnected bipsc-graphs not found by Gangopadhyay.

KkB

A

Kk

Figure 5.7: Bipsc-graphs with isolated vertices

5.24. Theorem. The following construction gives all and only bipsc-graphs
with isolated vertices (see Figure 5.7):
Take a bipsc-graph G which has a pure antimorphism σ, and classes A,B
(possibly B = φ, in which case G is just a null graph). Then to B add k
isolated vertices, and k vertices which are adjacent to every vertex of A.

Proof: It is evident that the construction gives a bipsc-graph G′. For, if we
denote the isolated vertices by v1, . . . , vk, and the vertices which are adjacent
to every vertex of A by w1, . . . , wk, then

σ′ := σ(v1w1) . . . (vkwk)

is a (pure) antimorphism of G′.
Conversely, let (H,P ) be a bipartitioned sc-graph with exactly k isolated

vertices, and classes A and B. If there is an isolated vertex v, then in (H,P )
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v will be adjacent to every vertex of the other class. So the k isolated vertices
must all be in the same class, say B.

By Quinn and Gangopadhyay’s result, H has a pure antimorphism π. So
B must also contain exactly k vertices of valency |A|, and π must map these
onto the isolated vertices and vice versa. These 2k vertices form one or more
cycles of π, and the other cycles of π then induce a bipsc-graph with a pure
antimorphism, proving the theorem. ¤

Paths in r-partite sc-graphs

5.25. We know that all sc-graphs have a Hamiltonian path, and they have
cycles of all lengths up to n − 2. There are strong results on path lengths
for some classes of bipsc- and r-psc-graphs, as we shall see below, but for
example, tripsc-graphs have not been investigated in this regard. We cannot
expect any strong results on circuits, at least for bipsc-graphs, as these have
no odd-length circuits at all. An interesting question would be to find bounds
on the girth and circumference of r-psc-graphs, or some special subclasses
such as connected bipsc-graphs.

Theorem[Gangopadhyay and Rao Hebbare 1980a]. Every connected bipsc-
graph of order n with Am 6= φ has a path of length n− 3; this result is best
possible. ¤

5.26. Theorem[Gangopadhyay and Rao Hebbare 1980a]. Let G be a bipsc-
graph with antimorphism σ ∈ Am 6= φ such that the subgraph induced on
each cycle of σ is connected. Then G has a Hamiltonian path. ¤

5.27. The next result generalises Clapham and Camion’s theorem, men-
tioned above, on Hamiltonian paths in sc-graphs:

Theorem[Gangopadhyay and Rao Hebbare 1980a]. Let G be an r-psc graph,
r ≥ 4, with an antimorphism σ, such that each cycle of length more than 1
intersects at least four classes. Then G has a Hamiltonian path. ¤
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Diameters in r-psc-graphs

5.28. One of the strongest, most elegant and best known results on sc-
graphs is the one which states that their diameter must be 2 or 3, and their
radius exactly 2. This does not hold for r-psc-graphs, if only because they
can be disconnected. However, there is a similar theorem for connected r-
psc-graphs. We start with bipsc-graphs. The proof given here is original, but
a more complicated proof of the bounds on the diameter was given in [148].

Theorem. Let G be a connected bipsc-graph with diameter d and radius s.
Then 3 ≤ d ≤ 6 and 3 ≤ s ≤ 5; moreover d = 6⇒ 3 ≤ s ≤ 4.

Proof: If G is a connected bipsc-graph, with classes A and B, then for any
u ∈ A there must be a vertex v ∈ B which is not adjacent to u. Moreover,
u and v cannot have a common neighbour. So all the vertices of A have
eccentricity at least 3, and the same holds for vertices of B, thus establishing
the lower bounds.

For the upper bounds we prove a Nordhaus-Gaddum type result that
if a connected bipartite graph G has diameter at least 6 then its bipartite
complement G̃ has diameter at most 6 and radius at most 4. In particular,
if G has radius 6 or more (and, thus, diameter at least 6) G̃ has radius at
most 4 and so cannot be isomorphic to G.

Let G be any connected bipartite graph with a vertex u0 of eccentricity at
least 6; that is, there is a vertex w of G whose distance from u0 is exactly 6.
Let A, B be the classes of G, where u0 ∈ A, and let u0, u1, u2, u3, u4, u5, u6 =
w be a path joining u to w. (See Figure 5.8).

u4

u5u3

u0 u2 u6

u1

u4

u5u3

u0 u2 u6

u1

Figure 5.8: A path of length 6 and its bipartite complement

Obviously, the even labeled vertices are in A, the odd labeled vertices in
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B. In G̃, u0, . . . , u6 induce a path u2, u5, u0, u3, u6, u1, u4. We now consider
the distance d̃(x, y) between two vertices x, y, in G̃.

Case 1: x, y ∈ A. Since no vertex of A can be adjacent to both u1 and
u5 in G, in G̃ x and y must either have u1 or u5 as a common neighbour, or
else x (say) is adjacent to u1 and y to u5. In either case we have

C1. d̃(x, y) ≤ 6, and

C2. d̃(x, u0), d̃(y, u0) ≤ 4.

Case 2. x, y ∈ B. No vertex of B can be adjacent to both u0 and u6 in
G, and so we see that C1 and C2 hold here as well.

Case 3. x ∈ A, y ∈ B. There are four possibilities to consider in G̃,
namely x ∼ u1, y ∼ u0, x ∼ u1, y ∼ u6, x ∼ u5, y ∼ u0 and x ∼ u5, y ∼ u6.
In each case it can be checked that C1 and C2 are valid. ¤

We note that if G is a bipsc-graph, a bipartite antimorphism between G
and G̃ may very well map one class into another, but this does not affect the
proof.

5.29. For r-psc-graphs in general, we have the following:

Theorem[Gangopadhyay and Rao Hebbare 1980b]. Let G be a connected
r-psc-graph with diameter d, where r ≥ 3. Then 2 ≤ d ≤ 5. ¤

For every r ≥ 2 and every diameter d allowed by the previous theorems,
Gangopadhyay and Rao Hebbare constructed a single r-psc-graph with diam-
eter d. Their k-clones then provide us with an infinite family of r-psc-graphs
with diameter d.

They also proved the following result, which generalises 1.6.A.

5.30. Theorem. Let G by an r-psc-graph, r ≥ 3. If G has a periodic
antimorphism such that each cycle of length greater than 1 intersects at
least three classes, then G has diameter 2 or 3.

5.31. Apart from the bounds on diameters of multipartite sc-graphs there
has also been much work on extremal problems — questions such as, “What is
the smallest n for which there is an r-psc-graph with n vertices and diameter
d?”
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We say that a complete r-partite graph is d-decomposable if it is decom-
posable into two factors with the same diameter d. If, moreover, the factors
are isomorphic (that is, they are r-partite self-complementary), we say that
the graph is d-isodecomposable. For a complete multipartite graph to be
isodecomposable, it must have an even number of edges; that is, if it has s
classes of odd order then s must be 0 or 1 (mod 4); we say that such a graph
is admissible. Here and in the rest of this section, a complete r-partite graph
is assumed to be non-trivial, that is, at least one of the classes must contain
two or more vertices, so we exclude Kr as an r-partite graph.

We denote by fr(d) [resp. gr(d)] the smallest number of vertices of a
complete r-partite d-decomposable [d-isodecomposable] graph. We denote
by f ′r(d) the smallest integer such that for every n ≥ f ′r(d) there is an r-
partite d-decomposable graph on n vertices. If no such number exists we put
fr(d) =∞, f ′r(d) =∞, gr(d) =∞ or g′r(d) =∞.

Finally, we denote by hr(d) the smallest integer such that every admissible
complete r-partite graph with at least hr(d) vertices is d-isodecomposable;
again, we put hr(d) =∞ if the required integer does not exist.

For all d and all r ≥ 2, Tomová [371] and Gangopadhyay [136, 138]
independently proved that fr(d) = f ′r(d), while Fronček and Širáň [125, 126,
130] proved that gr(d) = g′r(d), and so we have

fr(d) = f ′r(d) ≤ gr(d) = g′r(d) ≤ hr(d).

5.32. For bipartite and tripartite graphs we have not only extremal results,
but also characterisations of which graphs are d-decomposable or d-isode-
composable.

Theorem[Tomová 1977, Gangopadhyay 1982a, Fronček 1996a]. A complete
bipartite graph Km,n is d− decomposable if and only if it is d-isodecompos-
able, if and only if at least one of m and n is even and one of the following
conditions holds
A. d = 3, m ≥ 6, n ≥ 6;
B d = 4, m ≥ 4, n ≥ 4, or m = 3, n ≥ 6;
C. d = 5, m ≥ 3, n ≥ 4;
D. d = 6, m ≥ 3, n ≥ 4.

The extremal results are:
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(a) f2(3) = g2(3) = 12, h2(3) =∞,
(b) f2(4) = g2(4) = 8, h2(4) =∞,
(c) f2(5) = g2(5) = 7, h2(5) =∞,
(d) f2(6) = g2(6) = 7, h2(6) =∞.¤

5.33. Theorem[Gangopadhyay 1983, Fronček 1996a]. A complete tripartite
graph Km,n,s is d-isodecomposable if and only if at most one of m, n and s
is odd and one of the following conditions holds
A. d = 2, m ≥ 4, n ≥ 4, s ≥ 5;
B d = 3, m ≥ 2, n ≥ 2, s ≥ 2, or m = 1, n ≥ 4, s ≥ 4;
C. d = 4, m ≥ 1, n ≥ 2, s ≥ 2;
D. d = 5, m ≥ 1, n ≥ 2, s ≥ 4.

The extremal results are:
(a) f3(2) = g3(2) = 13, h3(2) =∞,
(b) f3(3) = g3(3) = 6, h3(3) = 8,
(c) f3(4) = g3(4) = h3(4) = 5,
(d) f3(5) = g3(5) = 7, h3(5) = 8.¤

5.34. Theorem[Gangopadhyay 1983, Fronček 1996b]. For r = 4 we have
f4(2) = 7, f4(3) = 5, f4(4) = 6, f4(5) = 8, while for r ≥ 5,

fr(2) = r + 1, fr(3) = r + 1, fr(4) = r + 2, fr(5) = r + 4;
(a) gr(2) = gr(3) = gr(4) = r + 3, gr(5) = r + 5, if r ≡ 0 (mod 4),
(b) gr(2) = gr(3) = r + 1, gr(4) = r + 3, gr(5) = r + 6 if r ≡ 1 (mod 4),
(c) gr(2) = gr(3) = r + 1, gr(4) = r + 2, gr(5) = r + 4 if r ≡ 2 (mod 4),
and
(d) gr(2) = gr(3) = gr(4) = r + 2, gr(5) = r + 4 if r ≡ 3 (mod 4). ¤

Almost self-complementary graphs

5.35. So far we have restricted ourselves to decompositions of complete
graphs (or complete digraphs, or complete multipartite graphs) into two iso-
morphic subgraphs. We will consider in the next section what happens when
we have any number of isomorphic subgraphs, but we must first address a
limitation of the classical case. Decompositions of Kn into two isomorphic
subgraphs are only possible when Kn has an even number of edges, that is
n ≡ 0 or 1 (mod 4). We saw in 2.31 how this limits the use of self-comple-
mentary graphs in finding exact values of Ramsey numbers.
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To remedy this deficiency we define an almost complete graph on n ver-
tices to be K̃n := Kn − ẽ, for some edge ẽ; and for any graph G ⊆ K̃n, we
denote K̃n−G by G̃. This does not give us any ambiguity because Kn 6⊆ K̃n,
and we will not be referring to K̃n − K̃n (which in any case is just Kn). A
graph G is then said to be almost self-complementary if

G ∼= G̃.

Now K̃n has an even number of edges exactly whenKn has an odd number
of edges, so that almost self-complementary graphs (asc-graphs) can only

exist when n ≡ 2 or 3 (mod 4), and they have (n+1)(n−2)
4

edges.

We note that before forming G̃ we have to distinguish the end-vertices
v, w, of the missing edge ẽ = vw; we will call these the special vertices. The
asc-graphs on 6 vertices are shown in Figure 5.9.

Figure 5.9: The almost self-complementary graphs on 6 vertices; the special
vertices are drawn in black.

As usual an isomorphism between G and G̃ is called an antimorphism; if
it maps the special vertices onto each other (or keeps them both fixed),
it is called a strong antimorphism, otherwise we call it a weak antimor-
phism. Strong antimorphisms therefore resemble the periodic r-partite anti-
morphisms, because their squares are always automorphisms.

5.36. Self-complementary graphs were first studied independently by two
authors [Sachs 1962, Ringel 1963] who made many similar discoveries. Three
decades later almost the same happened with almost self-complementary
graphs — two independent papers were published a year apart [Clapham
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1990, P.K. Das 1991] with significant overlap (though each reported results
not found by the other). However the first results in this area, namely those
on the existence of asc-graphs, were published in 1985 by Chartrand et al. [72]
in their study of graphs with switching number n−2, and this provided part
of the inspiration for Clapham’s paper.

We recall from 4.31 that if G is almost self-complementary then its self-
complement index is n−1 (though the converse is not true). So in this sense,
the asc-graphs are as close as one can get to being self-complementary on
n ≡ 2 or 3 (mod 4) vertices; but they are not unique in being this close,
because for all n there are other graphs on n vertices with s(G) = n− 1.

It is when we look at the switching number that the asc-graphs really
stand out. The switching number of a graph G is n if and only if G is self-
complementary, and it is never n− 1. The switching number of G is n− 2 if
and only if G is almost self-comlementary, so the asc-graphs are actually the
closest graphs to sc-graphs.

5.37. Our first results characterise the disconnected asc-graphs, and show
their existence for all n ≡ 2 or 3 (mod 4). They are the only results reported,
at least in part, by all three authors.

We denote by x ∪H the graph obtained by adding an isolated vertex x
to H, and by y + H the graph obtained from H by adding a new vertex y
and joining it to every vertex of H.

Proposition[Chartrand et al. 1985, Clapham 1990, P.K. Das 1991]. A
disconnected graph G is almost self-complementary if and only if G = x ∪
(y+G′), for some self-complementary graph G′. Moreover, x and y must be
the special vertices, and every antimorphism of G is strong, interchanging x
and y.

Proof: It is evident that if G is as above, and we take x and y to be the
special vertices of G, then G ∼= G̃. We note that G has one isolated vertex
and one other component.

Conversely, let G be a disconnected asc-graph on n vertices. If G has
no isolated vertex, then every component has at least two vertices; so its
complement G contains a spanning bipartite graph with at least two vertices
in each class. Then G̃ = G − e is also connected, so G cannot be almost
self-complementary.

So let G have an isolated vertex u. If there is any other isolated vertex v,
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then G̃ does not contain any isolated vertex, which is a contradiction (there
are two cases to check — either u, v are both special vertices, or at least one
of them is not).

So u is the only isolated vertex of G. If u is not a special vertex, then
in G there must also be a unique vertex v of degree n − 1, which is not a
special vertex either. In G̃, u and v switch roles, but since they are adjacent
in exactly one of G, G̃, we get another contradiction.

So u must be a special vertex, and G must contain at least one vertex w
of degree n− 2. If the other special vertex of G has degree less than n − 2,
then G̃ has no isolated vertices, which is impossible. So u and w must be the
special vertices of G, and it is then obvious that G′ := G − {u,w} must be
self-complementary.

G′ has n − 2 vertices, and because it is self-complementary each vertex
has degree at most n − 4 in G′; so w must be the unique vertex of degree
n− 2 in G. Thus every antimorphism must interchange u and w. ¤

5.38. We also note [P.K. Das 1991] that since every self-complementary
graph contains a Hamiltonian path, the non-trivial component of G is pan-
cyclic. The proposition tells us that there is a natural bijection between
sc-graphs on n vertices and asc-graphs on n + 2 vertices with an isolated
vertex. Since we know that sc-graphs exist for all n ≡ 0 or 1 (mod 4) we
have a neat existence result:

Corollary. There is a disconnected almost self-complementary graph on n
vertices if and only if n ≡ 2 or 3 (mod 4). ¤

So for every natural number n there is a self-complementary or almost
self-complementary graph on n vertices.

5.39. The first property of sc-graphs which we studied was their diameter.
This parameter has also been extensively studied for r-partite sc-graphs (see
the previous section) and t-complementary graphs (see 5.49). For almost
self-complementary graphs the corresponding result is short and sweet. The
proof we give is adapted from that of P.K. Das, which is much shorter than
Clapham’s.

Theorem[Clapham 1990, P.K. Das 1991]. If G is a connected almost self-
complementary graph, then its diameter and radius are either 2 or 3.
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Proof: Because G̃ is connected, G can have no vertices of degree n− 1, so
the radius (and thus diameter) of G is at least 2.

Now let G be a connected asc-graph of diameter at least 4. Then G̃ also
has diameter at least 4, but G = G̃ + e has diameter at most 2 (see 1.5.D
or [365]). So there are two vertices v, w in G̃ joined by a shortest path
v, a, b, c, w of length 4. It can be checked that v, w is the only edge we can
add so that every two of these vertices is now at distance at most 2. (If v and
w were to be at distance 5 or more, this would be impossible, so we already
have diam(G) ≤ 4). So v, w, are the special vertices.

Let A be the set of neighbours of v in G̃, C the set of neighbours of
w in G̃, and B be V (G) − A − C − {v, w}. (See Figure 5.10). Because

v w

CA

B

Figure 5.10: Two vertices at distance 4 in G̃.

4 ≤ d(v, w) <∞, B must be non-empty, and there can be no edges between
A and C. It is then a matter of routine to check that G has diameter at most
3, giving us a contradiction. ¤

5.40. Theorem[P.K. Das 1991]. For every n ≡ 2 or 3 (mod 4), n ≥ 6,
there is a connected asc-graph on n vertices of diameter 2, and one of diameter
3.

Proof: Let G be any self-complementary graph on 4k + 1 vertices with
antimorphism σ whose fixed vertex is v; let A be the neighbourhood of v,
and B the set of non-neighbours of v. Then |A| = 2k = |B|, σ(A) = B and
σ(B) = A. We also recall that for n ≥ 5, we can specify G to be of diameter
either 2 or 3.

If we add a vertex w adjacent to every vertex of A, we get an almost
sc-graph G1 on 4k + 2 vertices, with special vertices v and w; moreover,
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diam(G1) = diam(G). If, instead, we join w to every vertex of B, we get an
asc-graph G2 of diameter 3. If, to G1 and G2, we add a (non-special) vertex
z, which we join to w and to every vertex of A, we get two more asc-graphs
on 4k + 3 vertices — G3, whose diameter is the same as G, and G4 whose
diameter is 3. ¤

5.41. As with all types of self-complementary structure, we need to know
as much as possible about their antimorphisms. Because of the presence of
special vertices, the structure of these antimorphisms is unusually complex:

Theorem[Clapham 1990, P.K. Das 1991]. A permutation σ is the antimor-
phism of an almost self-comlementary graph G on n vertices with special
vertices v, w if and only if

A. n ≡ 2 (mod 4) and either

1. v and w are fixed points of σ, and all other cycles have lengths
that are multiples of 4, or

2. σ has one cycle of length 4s+2 containing v and w, with σ2s+1(v) =
w, and all other cycle-lengths are multiples of 4

B. n ≡ 3 (mod 4), and either

1. σ has a cycle of length 3 containing v and w, and all other cycles
have lengths that are multiples of 4, or

2. σ has one fixed point, one cycle of length 4s+ 2 containing v and
w, with σ2s+1(v) = w, and all other cycle-lengths are multiples of
4. ¤

We also note that any set of cycles of such an antimorphism induces
an asc-graph if they include both special vertices, and a self-complementary
graph otherwise.

5.42. Finally we gather a number of results by Das which parallel similar
results on self-complementary graphs. We recall that a biregular graph has
exactly two distinct degrees; if these degrees are s, s+ 1, for some s, we say
that the graph is almost regular.

157



A. There are no regular asc-graphs, but for every k ≥ 1 there is a biregular
asc-graph on 4k+2 vertices, and an almost regular asc-graph on 4k+3
vertices.

B. Any almost self-complementary graph on 4k + 2 or 4k + 3 vertices
contains k disjoint induced P4’s.

C. Gibbs’ Theorem (1.49) on the (0, 1,−1)-adjacency matrix for sc-graphs
also holds for almost self-complementary graphs.

5.43. We have generalised sc-graphs to bipartite self-complementary graphs
and, in this section, almost self-complementary graphs. Fronček [127] joined
the two concepts to form bipartite almost self-complementary graphs. As
before, we have K̃m,n = Km,n − ẽ. Actually, we are only interested in the
case when m and n are both odd, as otherwise |E(K̃m,n)| is odd, which
defeats the whole purpose of the exercise.

We also define the graph L2m,n+1 := K2m,n+1 −Km,1; that is, we remove
a star whose end-vertices are in the even part, and whose central vertex is in
the odd part of K2m,n+1.

Theorem. A disconnected almost self-complementary factor of K̃2m+1,2n+1

must be one the following

A. a graph with two components — a star K1,n and the graph L2m,n+1

B. a graph with just one non-trivial component, and one or more isolated
vertices which are all in the same class. Moreover, if one of the special
vertices v, w, is isolated, then it is the only isolated vertex, and every
antimorphism interchanges the two classes (so m = n) and maps v to
w. ¤

5.44. Theorem. An almost complete bipartite graph K̃m,n with m,n odd,
m ≤ n, is decomposable into two isomorphic factors with given diameter d
if and only if one of the following conditions holds:
A. d = 3 m ≥ 7,
B. d = 4 m ≥ 3, n ≥ 5, or m,n ≥ 5,
C. d = 5 m ≥ 3, n ≥ 5, or
D. d = 6 m ≥ 3, n ≥ 5.¤
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Isomorphic decompostitions

5.45. Up to now we have looked at decompositions of complete graphs (or
digraphs, or multipartite graphs, etc.) into two isomorphic subgraphs. The
widest possible way of generalising these concepts is to consider decompo-
sitions of any graph H into any number t of isomorphic factors. If such
a decomposition exists, we say that t divides H, written t|H. If H has a
decomposition into t copies of some graph G, then we also write G|H, and
we denote the set of all such graphs by H/t. We call the decomposition a
G-decomposition of H. Of course there might be several G-decompositions
of a given graph H; two G-decompositions (G1, . . . , Gt), (G

′
1, . . . , G

′
t), are

said to be isomorphic if there is an isomorphism of H which maps each Gx

to some G′y.

There has been a tremendous amount of work done on this concept. To
give just one example, many papers have been devoted just to the decompo-
sitions of Kn into one-factors (see [253] and its references). For information
on G-decompositions and various open questions we recommend the series of
papers by Harary, Robinson, Wallis and Wormald [187, 188, 189, 192, 193,
194, 195, 323, 392], and the excellent survey book by Bosák [45]. We will
give here just a sample of the more important results, restricting ourselves
to the case when H is a complete graph.

The most obvious place to start is with the existence question: if H is a
graph, and t is an integer, when does t divide H? It is obvious that

t|H ⇒ t||E(H)|.

This is known as the divisibility condition. Which of the integers satisfying
the divisibility condition actually divide H? For many types of complete
graphs it was established, in a remarkable series of divisibility theorems,
that the answer is “all of them”.

We use DKn to denote the complete digraph on n vertices, and Knm to
denote the complete multipartite (or equiparite) graph with n classes of m
vertices each; so Kn = Kn(1).

Divisibility Theorems. For any integers t and n
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t|Kn ⇔ t|n(n−1)
2

[Harary, Robinson, Wormald 1977/78a,
Schönheim and Bialostocki 1978/9]

t|DKn ⇔ t|n(n− 1) [Harary, Robinson, Wormald 1978c]

t|Kn(m)⇔ t|m2 n(n−1)
2

[Wang 1982, Quinn 1983]
t|DKn(m)⇔ t|m2n(n− 1) [Wang 1983]
t|Ka,b,c ⇔ t|ab+ bc+ ca (t even) [Yang 1995] ¤

Harary, Robinson and Wormald [193] noted that it is obvious that t|Km,n

iff t|mn; they also showed that, for t odd and m > t(t + 1), the divisi-
bility condition is not sufficient for K1,1,m, so that Yang’s result cannot be
improved.

5.46. The self-complementary graphs on n vertices are just the graphs in
Kn/2. It is therefore natural for the graphs in Kn/t to be called t-comple-
mentary graphs, or t-c-graphs for short. The name “t-complementary graph”
is taken from Bernaldez, its abbreviation adapted from Gangopadhyay, who
used t-sc-graph to refer to what we will call a t-c-class, which is not really a
graph.

The results above show that t-complementary graphs on n vertices exist
for all feasible t and n (many of Gangopadhyay’s results in [139] follow as
corollaries). We now consider when a fixed graph G is a t-complementary
on n vertices (G itself may have less than n vertices, but we add isolated
vertices to make it a factor of Kn, rather than just a subgraph of Kn). The
set of all such values n is called the spectrum of G-decompositions of Kn,
and obviously G is t-complementary if and only if t · |E(G)| =

(

n
2

)

for some
n in the spectrum, so we get a divisibility condition on the number of edges:

G|Kn ⇒ |E(G)||n(n−1)
2

.

There is another divisibility condition on the degrees. If gcd(G) denotes
the greatest common divisor of the degrees of G, it can easily be seen that

G|Kn ⇒ gcd(G)| gcd(Kn) = n− 1.

That these conditions are eventually sufficient is not trivial at all, but was
established by Wilson [388]:

Theorem. Let G be a finite simple graph with m edges. Then there exists
an integer n(G) such that, for all n ≥ n(G), G divides Kn if and only if
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A. m|n(n−1)
2

B. gcd(G)|n− 1. ¤

When gcd(G) = 1 this means that G is t-complementary for all t ≥
(

n(G)
2

)

/|E(G)|. Wilson also proved a similar, slightly more complex result for
digraphs.

5.47. Wilson’s theorem does not give us the value of n(G), nor does it tell
us what exceptions there are for n < n(G). So the problem of finding the
exact spectrum for a graph G is still interesting. We might also consider
the spectrum of G-decompositions of λKn, the complete multigraph with n
vertices, each pair of which are joined by λ edges. Quite a lot is known about
small graphs, and certain simple graphs like paths and cycles. In fact, for the
small self-complementary graphs the conditions above are always sufficient:

P4|λKn ⇔ 3|λn(n−1)
2

[Tarsi 1983]

C5|λKn ⇔ 5|λn(n−1)
2

, 2|λ(n− 1) [Rosa and Huang 1975]

A|Kn ⇔ 5|n(n−1)
2

[Bermond et al. 1980]

5.48. So we know when, for example, P4 is a t-complementary graph. That
P4 is self-complementary (that is, t = 2 is one of the admissible values)
is just a co-incidence, but we can use it to impose further conditions on
the decomposition. A G-decomposition of H is said to be complementary
if replacing each copy of G by its complement gives a G-decomposition of
H; we denote this by G|H. When, moreover, G ∼= G, we say that the
decomposition is self-complementary. The self-complementary spectrum for
the small sc-graphs has been found:

P4|Kn ⇔ 3|n− 1 [Granville et al. 1989]

C5|Kn ⇔ 5|n(n−1)
2

, 2|(n− 1), n 6= 15 [Lindner and Stinson 1984]

A|Kn ⇔ 5|n(n−1)
2

, 2|(n− 1), n 6= 15 [Rodger 1992]
Actually Rodger gave the self-complementary spectrum for A-decompos-

itions of λKn (for which, ironically, we do not have the usual spectrum):

A. If λ ≡ 1, 3, 7 or 9 (mod 10) then n ≡ 1 or 5 (mod 10), and if λ = 1
then n 6= 15.

B. If λ ≡ 2, 4, 6 or 8 (mod 10) then n ≡ 0 or 1 (mod 5).

C. If λ ≡ 5 (mod 10) then n ≡ 1 (mod 2), n 6= 3.
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D. If λ ≡ 0 (mod 10) then n 6= {2, 3, 4}.

The self-complementary spectrum for P4-decompositions of λKn is given
in [109]. If we want a self-complementary P4-decomposition of Kn containing
a smaller self-complementary P4-decompostion, say, of Km, then we must
have n ≡ m ≡ 1 (mod 3). The only extra condition needed is that n ≥
3m + 1, as was shown by Rees and Rodger [317]. Rees and Stinson proved
this for n ≥ 616 in [318].

Self-complementary decompositions are also used in [24].

5.49. As in 5.31 we can investigate extremal problems on diameters using
the following definitions. Let Fm(d) [resp. Gm(d)] be the smallest number
of vertices of a complete graph that can be decomposed into m factors [iso-
morphic factors] of diameter d. We denote by Hm(d) the smallest integer
such that every admissible complete graph with at least Hm(d) vertices can
be decomposed into m isomorphic factors of diameter d; here, we say that
Kn is admissible if m|

(

n
2

)

. If the requested numbers do not exist we put
Fm(d) =∞, Gm(d) =∞ or Hm(d) =∞, and obviously we have

Fm(d) ≤ Gm(d) ≤ Hm(d).

Thus, the results of Chapter 1 (1.5–1.6) on diameters can be phrased as

F2(d) = G2(d) = H2(d) =







4, if d = 3
5, if d = 2
∞, otherwise.

5.50. For the case when m = 3, Kotzig and Rosa [228] showed that

A. F3(d) = G3(d) = H3(d) for d =∞ and d = 1, 3, 4, 5, 6, and G3(∞) = 3,
G3(1) =∞, G3(3) = G3(4) = G3(5) = 6, G3(6) = 9.

B. 12 ≤ F3(2) ≤ G3(2) = H3(2) ≤ 13 (but see below).

C. H3(d) ≤ 3d− 6.

They also showed that when m = pr, p an odd prime,

Gm(∞) = Hm(∞) = m,
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and conjectured that Gm(d) = Hm(d) for all m ≥ 2, d ≥ 2.
Hı́c and Palumb́ıny [207] proved that for any m ≥ 3, Hm(2) ≤ 6m and for

any m ≥ 46, Gm(2) = Hm(2) = 6m. It is noted in a footnote that a result
of R. Nedela implies that the last equality holds for m ≥ 22; and by Kotzig
and Rosa’s result, it also holds for m = 3.

Cyclically t-complementary graphs

5.51. If G is a t-complementary graph, then a (G, t)-complementary class
(or just t-complementary class) is a particular G-decomposition (G1, . . . , Gt)
of Kn

2. In the classical case of self-complementary graphs (t = 2) every
2-complementary graph immediately defines a 2-complementary class. This
does not happen for t ≥ 3; in fact we might get non-isomorphic (G, t)-
complementary classes. Two (G, t)-complementary classes, (G1, . . . , Gt) and
(G′1, . . . , G

′
t), are isomorphic if there is a permutation of the n vertices map-

ping each Gx onto some G′y.
If (G1, . . . , Gt) is a t-complementary class, and σi is a permutation map-

ping Gi onto Gi+1 (subscripts taken modulo t), then we call the ordered
sequence (σ1, . . . , σt) a t-morphism class. In the particular case when σ1 =
σ2 = . . . = σt := σ we have a cyclic t-morphism σ; we call such a class a
cyclic (G, t)-class, while G is said to be a cyclically t-complementary graph,
after Bernaldez. The cyclic (G, t)-class is determined fully by G and σ, being
just (G, σ(G), σ2(G), . . . , σt(G)), so we can say that σ is a cyclic t-morphism
of G.

We note that Gangopadhyay, who did a lot of work in this area, called
t-complementary classes “t-sc-graphs”, t-morphism classes “complementing
permutation classes”, and cyclic t-morphisms “stable complementing permu-
tations”.

5.52. If C = (G, σG, . . . , σtG) is a cyclic t-c-class with cyclic t-morphism σ,
then for any permutation α, αC = (αG, ασG, . . . , ασtG) is a cyclic t-c-class
with cyclic t-morphism ασα−1. If α does not commute with σ then we get
two different cyclic morphisms; it would be interesting to know if the reverse
can happen, that is having two different, non-isomorphic (G, t)-classes with
the same cyclic t-morphism.

2We will use (G, t)-class and t-c-class as abbreviations.
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Problems. A. Can there be two non-isomorphic cyclic (G, t)-classes?
B. Can they have the same cyclic t-morphism?

Another interesting line of enquiry would be to investigate those graphs G
whose (G, t)-classes are all cyclic. One would suspect that these are exceed-
ingly rare; and that there are cyclically t-c-graphs whose non-cyclic (G, t)-
classes far outnumber the cyclic ones.

Problems. C. Construct an infinite class of cyclically t-c-graphs Gi, such
that the proportion of (Gi, t)-classes which are cyclic tends to 0 as i→∞.
D. Is there a graph G which is cyclically t-complementary for an infinite
number of t’s, but where the proportion of (G, t)-classes which are cyclic
tends to 0 as t→∞?

5.53. The structure of cyclic t-morphisms can be found by a straightforward
adaptation of the result by Sachs and Ringel for t = 2 (see 4.12). The method
of proof was essentially first used for t by Guidotti in [165]. Schönheim
(unpublished) used it in order to help Harary et al. [192] obtain an even
more general result (the Divisibility Theorem for Kn), though they later got
to know about Guidotti’s proof. However, these authors all stated their result
as “There exists a t-complementary graph on n vertices whenever t|

(

n
2

)

and
either gcd(t, n) = 1 or gcd(t, n−1) = 1.” Our corollary is stronger than this.

Surprisingly, although more than a decade later Bernaldez [40, 41] and
Gangophadhyay [139, 140] both investigated the structure and existence of
cyclic t-morphisms at length, and although both came close to this result and
its corollary, neither of them stated the results formally. Apparently, different
terminology prevented them from seeing the link between their work and that
of the other authors.

5.54. Theorem. Let t be an odd [resp. even] integer. A permutation is a
cyclic t-morphism if and only if it has cycle lengths a multiple of t [resp. 2t]
except, possibly, for one fixed point.

Proof: We first prove necessity. Let τ = (v1, v2, . . . , vk) be a cycle of
a cyclic t-morphism σ. Then the edge v1v2 generates a cycle of length k
(unless k = 2, in which case the edge cycle has length 1). So we must have
k ≡ 0 (mod t). If t = 2p is even, and k = 2p(2q + 1) is an odd multiple of t,
then the edge v1vp(2q+1)+1 generates a cycle of length p(2q + 1), which is not
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a multiple of t. So for t even, the cycle lengths must be a multiple of 2t.
If σ has two fixed points (v) and (w) would have a vertex-pair cycle vw

of length 1 which is impossible. So σ can have at most one fixed point.
To prove the converse, we note that a permutation σ of n vertices induces

a permutation of the edges of Kn. If the edge cycles thus induced all have
length a multiple of t, then we can colour the edges in each cycle with colours
1, 2, . . . , t in that order, thus defining a cyclic t-class. (In fact, all cyclic t-
classes with cyclic t-morphism σ will be produced in this way).

Given a permutation with cycle lengths satisfying the conditions of the
theorem, we thus want to show that for any edge e = vw of Kn, we only have
σx(e) = e when x is a multiple of t. Now e can be mapped onto itself in just
three ways:

Case1: v and w are in the same cycle τ of σ, and σx(v) = v, σx(w) = w.
If τ has length k, this will happen exactly when x is a multiple of k, and thus
of t.

Case 2: v and w are in the same cycle τ of σ, and σx(v) = w, σx(w) = v.
Then τ = (v1, v2, . . . , v2s), v = vi, w = vs+i, and this case arises whenever
x = 2rs + s is an odd multiple of s. When t is odd, t|2s ⇒ t|s. When t is
even, 2t|2s⇒ t|s. In either case, x is a multiple of t.

Case 3: v and w are in different cycles of σ, and σx(v) = v, σx(w) = w.
Then at least one of the cycles must have length a multiple of t, and so x
must be a multiple of t. ¤

5.55. Corollary. A cyclically t-complementary graph on n vertices exists if
and only if

A. n ≡ 0 or 1 (mod t), for t odd,

B. n ≡ 0 or 1 (mod 2t), for t even,

that is, if and only if t divides either n or n− 1, and t|
(

n
2

)

. ¤

5.56. Of course, this result is just a special case of the Divisibility Theorem.
Any integer t dividing n(n−1)

2
will divide Kn, but if it does not divide n or

n−1 then all t-complementary graphs must be non-cyclic, which supports the
Harary-Robinson [189] conjecture that almost all t-complementary graphs
on n vertices are non-cyclic as n → ∞. We note that Schwenk counted the
number of non-isomorphic cyclically t-complementary graphs on n vertices
(see 7.42–7.44).

165



The construction used in proving the Divisibility Theorem for Kn gives
us a way of finding non-cyclically t-complementary graphs — we just apply
it for some t which does not divide n or n − 1. Meanwhile, Alavi, Malde,
Schwenk and Swart [17] constructed, for each k, a graph Gk on 9k + 10
vertices which is 9-complementary but has no cyclic 9-morphism. So we also
have examples of non-cyclically t-complementary graphs when t does divide
n− 1.

5.57. Corollary 5.55 can be used to show that Thm. 4.1 of [139] is wrong.
Gangopadhyay claimed that any cyclically t-complementary graph on n ver-
tices can be extended to a cyclically t-complementary graph on n+t vertices.
For t even, this is obviously wrong, so let us see where the fault is. The
construction is as follows: let (G1, . . . , Gt) be a cyclic t-class with vertices
v1, . . . , vkt for some k. Add vertices w1, w2, . . . , wt, and to each Gi add the
edges wivj, 1 ≤ j ≤ kt, and wiwi+1. For t = 2 the construction is not well-
defined, as w1w2 is simultaneously assigned to G1 and G2. For t > 3 the
construction gives a cyclic decomposition of a graph H 6= Kn+t. It is only
for t = 3 that the construction works.

Theorem 4.2 of the same paper fails for similar reasons.

5.58. Given a decomposition (G1, . . . , Gt) of Kn, it is obvious that if some
permutation σ maps each Gi to Gi+1 for 1 ≤ i ≤ t−1, then it also maps Gt to
G1, so σ is a cyclic t-morphism. Even if σ maps Gi to Gi+1 for 1 ≤ i ≤ t− 2,
and σs is the identity, for some s 6≡ t− 1, then σ must map Gt−1 to Gt, and
must thus be cyclic [140].

To show that this result cannot really be improved Gangopadhyay con-
structed, for every odd t, a non-cyclic decomposition of Kt into t almost
one-factors; and for every even t, a non-cyclic decomposition of K2t into t
double stars. In each case, there is a t-morphism permuting the first t − 1
subgraphs cyclically, while leaving the last subgraph fixed.

Here an almost one-factor is a one-factor with an isolated vertex; this
graph also has a cyclic t-morphism [329]. The double star on 2k vertices
consists of two stars on k vertices, with an edge joining the two vertices of
degree k − 1 in each star.

5.59. There are a number of properties of cyclic t-morphisms which we give
here without proof:
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Theorem[Bernaldez 1994, 1996, Gangopadhyay 1994]. Let σ be a cyclic t-
morphism of a cyclically t-complementary graph G on n vertices. Then σs is
an automorphism of G if and only if s ≡ 0 (mod t), and a cyclic t-morphism
of G if and only if s and t are relatively prime.

The sum of the degrees (in G) of any t successive vertices in a cycle is
n− 1, while the degree of the fixed vertex, if any, is n−1

t
. If G is regular, all

vertices have degree n−1
t

(even if there is no fixed vertex).
Any set of cycles of σ induces a cyclically t-complementary subgraph G.

Any cyclically t-complementary graph on st vertices can be extended to one
on st+ 1 vertices. ¤

“Super-symmetrical” graphs

5.60. Self-complementary graphs are partitions of the edge-set of Kn into
two isomorphic subgraphs. We can also consider partitions of the vertex-set
of a graph G such that the subgraphs induced by the two subsets, A, B, are
isomorphic. However, this is not such an interesting concept in itself; for one
thing, it ignores completely the edges between A and B; for another, every
graph is isomorphic to the subgraphs in some bisection, so that the definition
is too wide. Kelly and Merriel considered, instead, the much more restrictive
class of bisectable graphs (and, later, digraphs). A graph G is bisectable if it
has 2n vertices, and for each set S of n vertices, the subgraphs induced by S
and V (G)− S are isomorphic.

We denote by G × K2 the graph consisting of two copies of G joined
by a one-factor; by ~Kn the transitive tournament of order n; and by DG the
digraph obtained from a graph G by replacing each edge by a pair of opposite
arcs.

Theorem[Kelly and Merriel 1960]. A graph is bisectable if and only if it
is one of the following graphs or it complement: 2C4, K2n, 2Kn, nK2 and
Kn ×K2,. ¤

It is interesting to note that none of these graphs are self-complementary,
while in the next theorem the only self-complementary digraphs are ~K2n,
and two tournaments of order 4 and 6, respectively; however, they are all
self-converse, with the exception of one tournament of order 4.
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5.61. Theorem[Kelly and Merriel 1968]. A digraph D is bisectable if and
only if D or D is one of the following:

A. DG, for any graph G in the previous theorem;

B. n ~K2, 2 ~Kn, ~K2n;

C. seven exceptional digraphs of order 4, six of order 6 and one of order
8. ¤

5.62. Harary, meanwhile, took an interest in the graphs which, no matter
how they are oriented, always give a self-converse digraph. For convenience,
the complete graphs on one and two vertices are denoted by C1 and C2.

Theorem[Harary, Palmer and Smith 1967]. The only connected simple
graphs for which every orientation is self-converse are the “small cycles” C1,
C2, C3, C4 and C5. The only connected multigraphs which are always self-
converse are just the small cycles, the multigraphs whose underlying graph is
C2, and the multigraphs obtained from all these graphs by adding the same
number of loops at each vertex. ¤

5.63. Instead of orienting a graph, we can assign a positive or negative sign
to all the vertices, edges, or both vertices and edges; the resulting graph is
called a marked graph, signed graph or net, respectively. In each case, the
dual is obtained by reversing all the signs, and self-dual graphs are defined
in the obvious way.

A graph which, no matter how its vertices or edges (or both) are signed,
always produces a self-dual marked graph, signed graph or net, is called M-
dual, S-dual or N-dual, respectively. It is not difficult to see that an M -dual
graph is bisectable and that, conversely, all the bisectable graphs found by
Kelly and Merriel in 1960 are M -dual. The S-dual and N -dual graphs are
given below.

Theorem[Harary and Kommel 1979]. The only S-dual graphs without iso-
lated vertices are C6, 2C3, 2C4, 2K1,n, 2nK2, K1,2n, nK1,2 and K2,n.
The only N -dual graph are 2K2 and K2n. ¤
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Chapter 6

Degree Sequences

6.1. The degree sequence of a graph is the sequence of its degrees, conven-
tionally, arranged in non-increasing order. One of the reasons for studying
the degree sequences of a class of graphs is to try to find some easy, or rel-
atively fast way of distinguishing members of the class from each other and
from non-members. In the case of sc-graphs these problems are just as dif-
ficult as the general graph isomorphism problem (see 4.2–4.10), but there
are a number of structural properties which can be deduced from the degree
sequence alone — for a self-complementary graph G, there are straightfor-
ward formulas for calculating the number of triangles and P4’s, and (with the
easily handled exception of G∗(4k)) for deciding whether G is Hamiltonian
or has a 2-factor (see 2.5, 2.6, 2.16 and 2.18). Since it is an easy matter
(algorithmically) to detect whether a graph is isomorphic to G∗(4k), these
four problems have O(n) or O(n2) solutions. Knowing more about the degree
sequences of sc-graphs opens the prospect of solving other problems too.

Parthasarathy and Sridharan [285] counted self-complementary graphs
and digraphs according to their degree sequence, while Hegde and Sridha-
ran [203] did the same for self-converse digraphs and oriented graphs, and
sc-tournaments. Their results are useful when generating self-complement-
ary graphs systematically, because as soon as one knows that the required
number of non-isomorphic sc-graphs with a given degree sequence has been
generated, these graphs can be excluded from consideration; see 4.11.
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Self-complementary graphs and digraphs

6.2. Let π = (d1, d2, . . . , dn) be a finite sequence of non-negative integers
such that d1 ≥ d2 ≥ · · · ≥ dn and d1+d2+· · ·+dn is even1. The sequence π is
said to be graphical if it is the degree sequence of some graphG (without loops
or multiple edges), and we call G a realisation of π. Erdős and Gallai [115]
showed that a necessary and sufficient condition for π to be graphical is that,
for r = 1, . . . , n− 1, we have

r
∑

i=1

di ≤ r(r − 1) +
n
∑

j=r+1

min(r, dj).

If π is the degree sequence of some self-complementary graph, we say
that it is potentially self-complementary. If, moreover, every realisation of π
is self-complementary, we say that it is forcibly self-complementary. We note
that an antimorphism of order 4 has all cycles of length exactly 4, except
for a single fixed vertex whenever n is odd. We therefore call this a 4-cycle
antimorphism, and define a 4-cycle realisation of π to be a self-complementary
realisation of π which has an antimorphism of order four. 2-cycle realisations
are defined similarly for self-complementary or self-converse digraphs.

We saw in 1.21 that the degree sequence of a sc-graph is symmetrical
about 1

2
(n − 1), and that for any r 6= 1

2
(n − 1) there is an even number of

vertices with degree r. We thus say that π is suitable if
either n = 4k, for some k, and

A. di + d4k+1−i = 4k − 1, for i = 1, 2, . . . , 2k

B. d2j = d2j−1, for j = 1, 2, . . . , 2k

or n = 4k + 1, for some k, and

C. di + d4k+2−i = 4k, for i = 1, 2, . . . , 2k + 1

D. d2j = d2j−1, for j = 1, 2, . . . , 2k.

A suitable sequence π = (d1, d2, . . . , dn) is highly redundant. If n = 4k,
then we can define a corresponding reduced sequence π∗ := (a1, a2, . . . , ak)

1Some people, like the author, are more used to visualising sequences in non-decreasing
order; here, instead, the indices increase as the values decrease.
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where ai = d2i−1 = d2i; we can recover the full suitable sequence from π∗

since π = (a1, a1, a2, a2, . . . , ak, ak, 4k − 1 − ak, 4k − 1 − ak, . . . , 4k − 1 −
a2, 4k − 1 − a2, 4k − 1 − a1, 4k − 1 − a1). If n = 4k + 1, since we know
that d2k+1 = 2k, we can define a similar reduced sequence that represents π
uniquely.

6.3. Clapham and Kleitman [90] showed by construction that in fact ev-
ery graphical suitable sequence is potentially self-complementary. In the
first paper on sc-graphs [341] Sachs had proved the particular case in which
the sequence has just one or two distinct degrees, by constructing appropri-
ate regular and biregular sc-graphs on 4k + 1 and 4k vertices respectively.
Clapham [86] showed that, given a suitable sequence, instead of the Erdős–
Gallai conditions we can use a much simpler set of inequalities to check
whether the sequence is graphical. We thus have the following:

Theorem [Clapham 1976b]. The sequence π is potentially self-complement-
ary if and only if π is suitable and the corresponding reduced sequence π∗

satisfies the inequalities

r
∑

i=1

ai ≤ r(n− 1− r) for r = 1, 2, . . . , k

where n = 4k or 4k + 1. Furthermore, if π is potentially self-complementary
then it has a 4-cycle realisation. ¤

6.4. Rao [302] tabulated pn, the number of suitable sequences, for small
values of n (see Table 6.1), but the general counting formula is still unknown.

n 4 5 8 9 12 13 16 17
pn 1 2 4 8 20 39 111 210

Table 6.1: The number of potentially self-complementary degree sequences

6.5. In the case of digraphs we must specify the outdegree and indegree of
each vertex, so we now have a degree-pair sequence, where each element in the
degree sequence is an ordered pair of integers (d+(vi), d

−(vi)), where d+(vi) is
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the outdegree of vi and d
−(vi) is the indegree of vi. An integer-pair sequence

is a sequence of ordered pairs of non-negative integers (a1, b1), . . . , (an, bn).
We call it digraphic if it is a degree-pair sequence of some digraph or, if it is
realised by at least one self-complementary [self-converse] digraph, potentially
digraphic self-complementary [potentially self-converse].

We consider all integer-pair sequences to be in dictionary order, that is
ai ≥ ai+1, and if ai = ai+1 then bi ≥ bi+1. By π1 = π2 we mean that if π1 and
π2 are both arranged in dictionary order the corresponding terms are equal.
For any integer-pair sequence π = (a1, b1), . . . , (an, bn) we define

π := (n− 1− a1, n− 1− b1), . . . , (n− 1− an, n− 1− bn)

π̃ := (b1, a1), . . . , (bn, an).

Digraphic integer-pair sequences were characterised by Fulkerson [132], but
a more useful formulation can be found in Chen [73, p.405]. The potentially
digraphic self-complementary, and potentially self-converse sequences were
characterised by Das [103], solving a problem posed by Rao [302]. A second
problem he posed, the characterisation of forcibly digraphic self-complement-
ary sequences is still open.

6.6. Theorem [Das 1981]. The integer pair sequence π is potentially di-
graphic self-complementary if and only if the following conditions hold:

A. π is digraphic

B. π = π

C. whenever n is even, say n = 2k, we have
∑k

i=1(ai + bi) ≡ k (mod 2).

Every potentially digraphic self-complementary sequence has a 2-cycle reali-
sation. ¤

6.7. Theorem [Das 1981]. The integer pair sequence π is potentially self-
converse if and only if π is digraphic and π = π̃. Every potentially self-con-
verse sequence has a 2-cycle realisation. ¤

6.8. The following result was found by Eplett [112]; it also follows from the
proof of 6.7.
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Theorem. [Das 1981] The integer pair sequence π has a sc-tournament re-
alisation if and only if π is digraphic and π̃ = π = π; equivalently [Eplett
1979] if and only if, for 1 ≤ i ≤ 1

2
n, we have

ai + bi = n− 1 = ai + an+1−i, and

i
∑

j=1

bj ≥
(

i

2

)

.

Moreover, every such sequence has a 2-cycle tournament realisation. ¤

See also Sridharan and Merajuddin [360] for the number of degree se-
quences of sc-tournaments.

Edge degree sequences

6.9. For a graph [digraph] the degree of an edge uv is the ordered pair
(d(u), d(v)) [(d−(u), d−(v))] of degrees [indegrees] of its vertices, and the
edge-degree sequence is the sequence of degrees of its edges; this concept
was introduced in [172]. An edge-degree sequence with at least one self-
complementary graph [digraph] realisation will be said to be potentially edge
[digraphic] self-complementary. If, moreover, all of its realisations are self-
complementary we say that it is forcibly edge self-complementary.

For any integer-pair sequence π = (a1, b1), . . . , (am, bm) we define the
sequences A := (a1, . . . , am), B := (b1, . . . , bm), C = (a1, b1, . . . , am, bm); and
the set S := {d1, . . . , dr} consisting of all distinct integers appearing in π,
labelled so that d1 > d2 > · · · > dr. We also define the following parameters:

k′(s, t) is the number of times the ordered integer pair (s, t) occurs in π,

k(s, t) :=

{

k′(s, t) + k′(t, s) if s 6= t
k′(s, t) if s = t

k(s) is the number of times s occurs in A
k′(s) is the number of times s occurs in B
n(s) is the number of times s occurs in C

l′i :=

{

k′(di)/di if di 6= 0
n(di) if di = 0

If π is the edge-degree sequence of a graph, then it will contain only
positive integers, and the number of vertices of degree di will be just n(di)/di.
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So for sequences consisting only of positive integers (positive integer-pair
sequences) we define

li := n(di)/di, for 1 ≤ i ≤ r.

With this notation we can now state the results obtained by Das [104], some
of which were also found by Chernyak [74, 75].

6.10. Theorem [Das 1983, Chernyak 1983a, 1983b]. A positive integer-pair
sequence π is potentially edge self-complementary if and only if the following
conditions hold:

A. li = lr+1−i and li is an even integer, for 1 ≤ i ≤ 1
2
r.

B. If r is odd, then l(r+1)/2 ≡ 1 (mod 4).

C. k(di, di) + k(dr+1−i, dr+1−i) = 1
2
li(li − 1) for 1 ≤ i ≤ 1

2
(r + 1).

D. k(di, dr+1−i) = 1
2
l2i for 1 ≤ i ≤ 1

2
r.

E. k(di, dj) + k(dr+1−i, dr+1−j) = k(di, dr+1−j) + k(dr+1−i, dj) = lilj for
i 6= j, 1 ≤ i, j ≤ 1

2
(r + 1).

F. k(di, dj) is even for i 6= j, 1 ≤ i, j ≤ r.

Moreover, every potentially edge self-complementary sequence has a 4-cycle
realisation. ¤

6.11. Both in 6.10 and 6.13, Das lists another condition but does not use
it in the proof: di + dr+1−i =

∑r
j=1 lj − 1. In fact it can be derived from

A, C, D, E by writing di = n(di)/li = (
∑r

j=1 k(di, dj) + k(di, di))/li. It is
interesting to note that in 6.10 and 6.13, as well as the next theorem, it is
not assumed that π is graphic or digraphic.

Theorem [Das 1983]. An integer-pair sequence π is potentially edge di-
graphic self-complementary if and only if the following conditions hold:

A. For all i, 1 ≤ i ≤ 1
2
(r + 1)

di + dr+1−i =







2
(

∑r/2
i=1 l

′
i

)

− 1 if r is even,

2
(

∑(r−1)/2
i=1 l′i

)

+ l′(r+1)/2 − 1 if r is odd.
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B. k′(di) = l′idi, k′(dr+1−i) = l′idr+1−i and l′i is an integer for 1 ≤ i ≤
1
2
(r + 1).

C. If r is odd, then l′(r+1)/2 ≡ 1 (mod 2).

D. k′(di, di) + k′(dr+1−i, dr+1−i) = l′i(l′i − 1) for 1 ≤ i ≤ 1
2
(r + 1).

E. k′(di, dj) + k′(dr+1−i, dr+1−j) = l′il′j for 1 ≤ i 6= j ≤ r.

Furthermore, every potentially edge digraphic self-complementary sequence
has a 2-cycle realisation. ¤

6.12. Theorem [Das 1983]. An integer-pair sequence π is the edge-degree
sequence of some sc-tournament (and, in particular, of some 2-cycle tourna-
ment realisation) if and only if π is potentially edge digraphic self-comple-
mentary and is the edge-degree sequence of some tournament. ¤

6.13. Theorem [Das 1983, Chernyak 1983b]. A positive integer-pair se-
quence π is forcibly edge self-complementary if and only if the following
conditions hold:

A. li = lr+1−i = 2 or 4 for 1 ≤ i ≤ 1
2
r.

B. If r is odd, then for i = 1
2
(r + 1) either li = k(di, di) = 5 or li =

k(di, di) + 1 = 1

C. {k(di, di), k(dr+1−i, dr+1−i)} = {0, 1
2
li(li − 1)} for 1 ≤ i ≤ 1

2
r.

D. k(di, dr+1−i) = 1
2
l2i for 1 ≤ i ≤ 1

2
r.

E. {k(di, dj), k(dr+1−i, dr+1−j)} = {k(di, dr+1−j), k(dr+1−i, dj)} = {0, lilj}
for i 6= j, 1 ≤ i, j ≤ 1

2
(r + 1). ¤

6.14. These results can be used for the characterisation of forcibly self-
complementary degree sequences, by reducing it to an integer-pair sequence
problem. Let π = (d1, . . . , dn) be a graphic degree sequence. The integer-
pair sequence S(π) is defined by the following algorithm based on the one
of [171, 221].

Step 1. Put S(π) = φ (the empty sequence) and V = (d1, d
′
1), . . . , (dn, d

′
n)

where d′i = di for 1 ≤ i ≤ n. Go to Step 2.
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Step 2. Order V so that the d′i sequence is non-increasing. Remove the
first member of V , say (dk, d

′
k), from V . Let the ith member of V be (dj, d

′
j);

for all i, 1 ≤ i ≤ d′k, add (dk, dj) to S(π) and put d′1 = d′j − 1. Proceed to
Step 3.

Step 3. If for any member of V d′i is zero, then remove it from V . If
V = φ stop. Otherwise go to Step 2.

Theorem [Das 1983, Chernyak 1983b]. Let π be a graphic degree sequence.
Then π is forcibly self-complementary if and only if S(π) satisfies conditions
A through E of 6.13 and condition F given below, where δij is the Kronecker
delta.

F. If i, j, s, t are such that i 6= s, j 6= t and δitδjs < min{k(di, dj), k(ds, dt)},
then either

k(di, dt) =
li(lt − δit)
1 + δit

or k(dj, ds) =
lj(ls − δjs)
1 + δjs

.¤

6.15. Rao [307] obtained a different characterisation of the forcibly self-
complementary degree sequences, and counted them too. He first wrote π in
the form

π = (d1)
n1 · · · (dm)nm

where
∑

ni = n, ni > 0, d1 > . . . > dm > 0, and (di)
ni means that di occurs

exactly ni times in π. The characterisation can then be stated as follows.

Theorem. A degree sequence π = (d1)
n1 · · · (dm)nm with n ≡ 0 (mod 4) is

forcibly self-complementary if and only if m is even, say m = 2k, and for all
i, 1 ≤ i ≤ k, the following hold:

A. ni = 2 or 4.

B. ni = nm+1−i.

C. di + dm+1−i = n− 1.

D. di = n − 1 − 1
2
ni −

∑

j=1 i− 1nj, with the convention that
∑0

j=1 nj =
0. ¤
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6.16. Theorem. A degree sequence π = (d1)
n1 · · · (dm)nm with n ≡ 1

(mod 4) is forcibly self-complementary if and only ifm is odd, saym = 2k+1,
and the following hold:

A. nk+1 = 1 or 5.

B. dk+1 = 1
2
(n− 1).

C. π′ := (d′1)
n′1 · · · (d′m−1)n

′
m−1 is a forcibly self-complementary sequence of

length n− nk+1, where

d′i :=

{

di − nk+1, 1 ≤ i ≤ k,
di − 1, k + 1 ≤ i ≤ 2k,

n′i :=

{

ni, 1 ≤ i ≤ k,
ni+1, k + 1 ≤ i ≤ 2k.¤

6.17. Theorem. Let fn be the number of forcibly self-complementary degree
sequences on n vertices. Then f 4k = f 4k+1 and (f 4k)k≥0 is the Fibonacci
sequence, that is f 0 = f 4 = 1 and f 4k = f 4k−4 + f 4k−8.

Bipartite sc-graphs and sc-tournaments

6.18. Let (G,P ) be a bipartitioned graph, where G is a bipartite graph, P
is the bipartition A = {u1, . . . , um} ∪B = {v1, . . . , vn}, and where

d(u1) ≥ · · · ≥ d(um) and d(v1) ≥ · · · ≥ d(vn).

If we denote d(ui) by di and d(vj) by ej, then the degree sequence of (G,P )
is the bipartitioned sequence

π((G,P )) = (d1, . . . , dm|e1, . . . , en)

The bipartite complement of (G,P ) is (G,P ) := K|A|,|B|−G. We have to
specify the bipartition explicitly because disconnected bipartite graphs do not
necessarily have a unique bipartite complement. If there is an isomorphism
σ : (G,P ) → (G,P ) (called a bipartite antimorphism) we say that G is
a bipartite self-complementary (bipsc) graph. We call σ a pure bipartite
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antimorphism if it keeps A and B fixed, and a mixed periodic bipartite
antimorphism if it interchanges A and B. Every bipsc-graph must have
either a pure or a mixed periodic antimorphism; see 5.21–5.23.

A bipartitioned sequence will be said to be graphic [unigraphic] if it is the
degree sequence of at least one bipartite graph [exactly one bipartite graph,
up to isomorphism]. A bipartitioned sequence is potentially bipsc [forcibly
bipsc] if it is graphic and its realisations include at least one bipsc-graph
[only bipsc-graphs].

We say that π = (d1, . . . , dm|e1, . . . , en) is evenly balanced if
m = 2t = n is even,
di + e2t+1−i = 2t for 1 ≤ i ≤ 2t, and
d2i−1 = d2i for 1 ≤ i ≤ t;

and bi-symmetrical if
di + dm+1−i = n for 1 ≤ i ≤ m,
ej + en+1−j = m for 1 ≤ j ≤ n.

We use rk to denote a sequence r, . . . , r of length k

6.19. Theorem [Gangopadhyay 1982b]. A bipartitioned sequence π =
(d1, . . . , dm|e1, . . . , en) is potentially bipsc if and only if it is graphic and
satisfies at least one of the following conditions:

A. π is evenly balanced.

B. π is bi-symmetrical and exactly one of m and n is odd.

C. π is bi-symmetrical,m and n are both even, and either dm/2 = dm/2+1 =
1
2
n, or en/2 = en/2+1 = 1

2
m.

D. π is bi-symmetrical, and m, n and
∑n/2

j=1 ej −
∑m/2

i=1 di − 1
4
mn are all

even.

Furthermore

(1) π is the degree sequence of some bipsc-graph (G,P ) with a mixed pe-
riodic bipartite antimorphism iff A holds, and

(2) π is the degree sequence of some bipsc-graph (G,P ) with a pure bipar-
tite antimorphism iff at least one of B, C, D holds. ¤
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6.20. Proposition [Gangopadhyay 1982b]. A bipartitioned sequence π =
(d1, . . . , dm|e1, . . . , en) is the degree sequence of a connected bipsc-graph iff
π is potentially bipsc and

A. min(dm, en) > 0.

B. π 6∈ {(n1, n− n1|1n), (1m|m1,m−m1)} for some integers m1, n1, with
0 < m1 < m and 0 < n1 < n. ¤

6.21. For the characterisation of forcibly bipsc sequences we need the fol-
lowing conditions, which we can make without loss of generality since, if

π = (d1, . . . , dm|e1, . . . , en)

violates any one of them, then

↔
π := (e1, . . . , en|d1, . . . , dm)

satisfies them all.

X. If d1 > dm then e1 > en.

Y. If some ej = 1
2
m, then some di = 1

2
n.

Z. If d1 > dm, e1 > en, some di = 1
2
n and some ej = 1

2
m, then dp−n+ q ≥

eq −m+ p, where p = max{i|di > 1
2
n} and q = max{j|ej > 1

2
m}.

We denote 1
2
m by s iff m is even, and 1

2
n by t iff n is even. If π is evenly

balanced we denote 1
2
m = 1

2
n by t. Note that if π is bi-symmetrical and

di = dm+1−i for some i [ej = en + 1 − i for some j] then n [resp. m] is even
and thus t [resp. s] is well-defined.

6.22. Theorem [Gangopadhyay 1981]. Let π = (d1, . . . , dm|e1, . . . , en) be
a bipartitioned sequence satisfying (without loss of generality) conditions X,
Y and Z. Then π is forcibly bipsc iff

∑m
i=1 di =

∑n
j=1 ej and π satisfies one

of the following four conditions:

A. π is evenly balanced and the sequence π′ := (d1+2r− 1, . . . , d2r+2r−
1, e1, . . . , e2r) is forcibly self-complementary.
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B. π is bi-symmetrical, d1 = dm, e1 = en and either min(s, t) ≤ 2, or
min(s, t) = 3 and max(s, t) ≤ 4.

C. π is bi-symmetrical, d1 = dm and if k is the number of ej’s in π which
are equal to 0, then either t− k ≤ 2, or π̇ := ((t− k)m|ek+1, . . . , e2t−k)
is one of the following bipartitioned sequences:
π1 = (36|36), π2 = (46|38), π3 = (38|46), π4 = ((t− k)2|12(t−k)),
π5 = ((t− k)4|22(t−k)), π6 = ((t− k)m|(m− 1)t−k, 1t−k),
π7 = ((t− k)4|3, 22(t−k−1, 1), π8 = (32s|2s− 1, s4, 1).

D. π is bi-symmetric, n is even, and if p is the number of di’s greater than
1
2
n and q the number of ej’s greater than 1

2
m, then 0 < p ≤ 1

2
m and

0 < q ≤ 1
2
n. Furthermore, if h is the number of ej’s in π which are not

less than m− p, then

(1)
∑p

i=1 di = (n− h)p+∑n
j=n−h+1 ej

(2)
∑h

j=1 ej = (m− p)h+
∑m

i=m−p+1 di

(3) either p = 1
2
m or t−h ≤ 2 or π̈ := ((t−h)m−2p|eh+1−p, . . . , e2t−h−

p) is one of π1 to π8 , with t replaced by t− h and k replaced by
0,

(4) the bipartitioned sequence π∗ := (d1−n+h, . . . , dp−n+h|en−h+1,
. . . , en) is unigraphic. ¤

6.23. For a bipartite tournament T (i.e. an orientation of Km,n), with
bipartition A = {v1, . . . , vm} ∪ B = {u1, . . . , un}, where d+(u1) ≥ · · · ≥
d+(um) and d

+(v1) ≥ · · · ≥ d+(vn), we define the degree sequence to be

π(T ) = (a1, . . . am|b1, . . . , bn),

where ai and bj denote d+(vi) and d+(uj) respectively. The indegrees are
determined unambiguously by d+(vi)+d

−(vi) = n and d+(uj)+d
−(uj) = m.

When m = 2r and n = 2s are even, we define

σ(π) := (a1 + · · ·+ ar) + (b1 + · · ·+ bs)− rs.

The bipartition is unique because T must be connected. T is a bipsc-
tournament if it is isomorphic to its bipartite complement. We recall that a
2-cycle bipartite antimorphism must have at most one fixed vertex, all other
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cycles being of length 2; while a pure bipartite antimorphism must keep
A and B fixed. A pure bipartite antimorphism cannot have fixed vertices
in both A and B, but it might have, say, two or more fixed vertices in A.
Bagga and Beineke announced their characterisation of the degree sequences
of bipsc-tournaments with pure, and pure 2-cycle bipartite antimorphisms
in [30]:

Theorem. The bipartitioned sequence π = (a1, . . . am|b1, . . . , bn) is the de-
gree sequence of some bipsc-tournament with a pure bipartite antimorphism
if and only if

A. π is the degree sequence of some bipartite tournament, that is
∑k

i=1 ai ≤
∑n

j=1min(k,m− bj) for all k, with equality when k = m.

B. ai + am+1−i = n and bj + bn+1−j = m for all i, j.

C. m or n is even.

D. Whenever m = 2r and n = 2s are both even, and ar > ar+1 and
bs > bs+1, then σ(π) is also even.

To characterize degree sequences which have a bipsc-tournament realisation
with a pure 2-cycle bipartite antimorphism, we replace D with the stricter
condition:

D’. Whenever m and n are both even, σ(π) is also even.

Open problems

6.24. Despite the impressive results listed here, there is still great scope
for characterising different types of degree sequences for different types of
self-complementary graphs. The most notably absent are the forcibly di-
graphic self-complementary [302] and forcibly self-converse degree-pair se-
quences, and the potentially edge self-converse sequences. A less difficult
task might be to find which digraphic degree-pair sequences have only sc-
tournaments as realisations.

Alternatively, one can turn to more exotic problems. For example Pirzada
[288] studied self-converse score lists of oriented graphs; Chartrand, Gavlas,
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Harary and Schultz [69] and Yan, Lih, Kuo and Change [397] characterised
signed degree sequences of signed graphs, which raises the obvious problem
of finding the signed degree sequences of self-dual signed graphs. Finally
Nair [263] proposes the characterisation of triangle sequences, where the tri-
angle number of a vertex v is the number of triangles containing v, and the
triangle sequence of a graph is the sequence of the triangle numbers of its
vertices. Similar definitions can be made for edge-triangle sequences.
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Chapter 7

Enumeration

7.1. Enumeration of graphs is a wide and active field of research, much
of it triggered by Harary and Palmer, and their classical book [182]. The
enumeration of many types of self-complementary structures has also received
a great deal of attention, starting with Read’s fundamental result on the
number of self-complementary graphs and digraphs [313]. Various other self-
dual structures have also been enumerated, and Robinson’s survey [324] is
still a useful reference point. The history of the methods used is a long and
controversial one, as they have been attributed to Cauchy and Frobenius,
claimed by Burnside and developed by Redfield. The latter only published
two papers [315, 316] which went unnoticed, and his results were re-discovered
and expanded by Pólya [289], de Bruijn (e.g. [51, 52, 53]), and Harary [173],
working also with Palmer [179].

The aim of this chapter is quite different from Robinson’s article, because
it is intended as a useful collection of results concerning self-complement-
ary graphs and digraphs. In most cases we do not give proofs or explain
the methods used, but we do present explicit formulas as far as possible.
We also treat topics such as colour cyclic factorisations, sc-k-plexes and sc-
orbits, which generalise the enumeration of sc-graphs. We start with some
basic definitions.
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Definitions

7.2. A partition of n is denoted by the vector j = (j1, j2, . . . , jn) where jk is
the number of parts equal to k. That is

n
∑

k=1

kjk = n.

A permutation α which has jk cycles of length k will be said to have type j.
The number p(j) of permutations of type j in Sn is then

p(j) =
n!

∏n
k=1 k

jkjk!
.

We denote the greatest common divisor and least common multiple of two
numbers by 〈r, t〉 and [r, t] respectively.

7.3. Definition.A generating function (or counting polynomial) g(x) for a
sequence {un} is the power series

u0 + u1x+ u2x
2 + · · ·+ unx

n + · · ·

This definition may be extended to sequences with several parameters. For
example, the generating function g(x, y) for a sequence {un,r} is

u0,0 + u0,1y + u1,0x+ u1,1xy + · · ·+ un,rx
nyr + · · ·

7.4. Definition.Let Γ be a permuation group acting on an object set S =
{1, 2, . . . , n}. For each permutation γ ∈ Γ, let jk(γ) denote the number of
cycles of length k in the disjoint cycle decomposition of γ. Then the cycle
index of Γ is the polynomial

Z(Γ) = Z(Γ;x1, x2, . . . , xn) =
1

|Γ|
∑

γ∈Γ
x1

j1(γ)x2
j2(γ) . . . xn

jn(γ).

For any polynomial p(x) we let Z(Γ, p(x)) denote the polynomial obtained
by replacing each xk by p(xk). For example

Z(Γ, 1 + x) = Z(Γ; 1 + x, 1 + x2, . . . , 1 + xn).
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7.5. Definition.We denote the symmetric group on n elements by Sn. The
permutations in Sn induce permutations of the

(

n
2

)

2-subsets in the object set.

These permutations of the 2-subsets form the pair group S
(2)
n . Similarly, the

permutations of the n(n− 1) ordered pairs of distinct elements in the object

set form the reduced ordered pair group S
[2]
n . The permutations induced by

Sn on all ordered pairs, where the elements need not be distinct, form the
ordered pair group S2n. Note that, for n > 2, Sn ∼= S

(2)
n
∼= S

[2]
n
∼= S2n.

The restricted power group SS2∗
n consists of ordered pairs (α; β) of per-

mutations α ∈ S2, β ∈ Sn so that for any ordered pair of distinct elements
(i, j),

(α; β)(i, j) =

{

(βi, βj) if α = (1)(2)
(βj, βi) if α = (12)

The power group SS2
n is defined similarly, except that now i and j need not

be distinct.
Cn denotes a regular cyclic permutation group of order n and degree n;

in other words, it is generated by an n-cycle. It is isomorphic to Zn, as a
permutation group, acting on Zn as object set.

7.6. The cycle index of the pair groups [278] is given by

Z(S(2)n ) =
1

n!

∑

j

p(j)





bn/2c
∏

k=1

(xkx
k−1
2k )j2kxk

k(jk2 )

b(n−1)/2c
∏

k=0

x
kj2k+1

2k+1

∏

1≤r<t≤n
x
〈r,t〉jrjt
[r,t]





Z(S [2]n ) =
1

n!

∑

j

p(j)
n
∏

k=1

xk
(k−1)jk+2k(jk2 )

∏

1≤r<t≤n
x
2〈r,t〉jrjt
[r,t]

The cycle index of Cn [222] is given by

Z(Cn) =
1

n

n
∑

k=1

x
〈k,n〉
[k,n]/k =

1

n

∑

r|n
φ(r)xn/rr

since the Euler function φ(r) gives the number of integers k ≤ n with 〈k, n〉 =
n/r.
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Self-complementary graphs and digraphs

7.7. We start with a brief overview of Read’s method [313] for counting
self- complementary graphs, as this is essentially the same method used to
count many other types of self-complementary structures. (The last sec-
tion on sc-orbits provides a more general and direct method of enumerating
self-complementary structures. We note in passing that a later attempt by
D’Amore [102] to count self-complementary graphs was totally wrong; be-
sides, it is not true that the necessary conditions he gave are also sufficient
for a graph to be self-complementary). The problem was originally posed by
Harary [175]. We normally partition graphs into isomorphism classes, and it
was proved by Redfield [315], and also by Harary [173] using Pólya’s enumer-
ation theorem [289], that the generating function for isomorphism classes of
graphs with n vertices (that is, the polynomial where the coefficient of xk is
the number of non-isomorphic graphs with n vertices and k edges) is

Z(S(2)n ; 1 + x, 1 + x2, 1 + x3, . . .).

If we only want the total number of graphs, irrespective of the number of
edges, then we just put x = 1 to get

gn = Z(S(2)n ; 2, 2, 2, . . .).

We now define a new type of equivalence relation on graphs — two graphs
G1, G2 are equivalent if G1

∼= G2 or G1
∼= G2. This relation partitions graphs

into complementation classes, whose number is given by de Bruijn [51] as a
special case of his generalisation of Pólya’s theorem:

cn =
1

2
Z(S(2)n ; 2, 2, 2, . . .) +

1

2
Z(S(2)n ; 0, 2, 0, 2, . . .).

When G 6∼= G the complementation class of G will correspond to two iso-
morphism classes, whereas if G is self-complementary its complementation
class will correspond to just one isomorphism class. Thus if gn denotes the
number of sc-graphs, we have gn = 2cn − gn, so that

gn = 2cn − gn = Z(S(2)n ; 0, 2, 0, 2, . . .).

Similarly, for sc-digraphs we have

dn = Z(S [2]n ; 0, 2, 0, 2, . . .).
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Wille [386], and later Xu, Wang and Wang [396], generalised the result for
gn by showing that the number of self-complementary r-multigraphs on n
vertices is

g rn = Z(S(2)n ; 0, r + 1, 0, r + 1, . . .) when r is odd, and

g rn = Z(S(2)n ; 1, r + 1, 1, r + 1, . . .) when r is even.

We can give more explicit formulas, both for the classic case (r = 1) and for
the general case.

7.8. Theorem [Read 1963]. The number of self-complementary graphs of
even and odd orders is given, respectively, by

g4n =
∑

j

2c(j)
∏

kjkjk!

g4n+1 =
∑

j

2c(j)+
∑

jk

∏

kjkjk!

where the sums are over all partitions j of n, and

c(j) = 2
n
∑

k=1

jk(kjk − 1) + 4
n
∑

1≤r<t≤n
〈r, t〉jrjt.

The number of self-complementary digraphs of even and odd orders is given,
respectively, by

d2n =
∑

j

2c(j)
∏

kjkjk!

d2n+1 =
∑

j

2c(j)+2
∑

jk

∏

kjkjk!
.

7.9. Theorem [Wille 1978]. The number of self-complementary r-multigraphs
on n vertices, for r odd, is given by

g r4n+2 = g r4n+3 = 0
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g r4n =
∑ (r + 1)c

′(j)

∏

kjkjk!

g r4n+1 =
∑ (r + 1)c

′(j)+
∑n
i=1 j4i

∏

kjkjk!

where the sums are over all partitions j of 4n [resp. 4n+1] with j1 = 0 [resp.
j1 = 1] and all other jk equal to 0 whenever k 6 |4; and where

c′(j) =
∑

i = 1n2ij24i + 4
∑

1≤s≤t≤n
[s, t]j4sj4t.

For r even we have

g rn =
∑

j

(r + 1)c
′′(j)

∏

kjkjk!

where the summation is over all partitions j of n, and

c′′(j) =
∑

i

∑

s<t
〈s,t〉=2i

[s, t]jsjt +

bn/2c
∑

i=1

(ij22i − j2i + j4i)

7.10. It can be seen that g4n = d2n. Read noted this in his paper, and Morris
discussed this interesting observation in [258], but to date no one has found
a natural bijection between self-complementary graphs on 4n vertices and
self-complementary digraphs on 2n vertices. Robinson [324, Section 6] and
Clapham [88] obtained gn and dn by using Sachs’ construction of self-comple-
mentary graphs. This method, which was suggested by Read in his review
of Sachs’ paper, is more direct but it does not seem to offer new insights into
the identity above. The first few values of gn and dn are tabulated in 7.15
and 7.27, respectively.

7.11. Robinson [324] showed many other similar correspondences. He de-
fined a bilayered digraph as a superposition of two digraphs, with the edges
of one coloured red and the edges of the other coloured blue; the colours are
not interchangeable, so that switching all red edges to blue, and vice versa,
will not in general produce an isomorphic bilayered digraph. Then d2n = bn,
where bn is the number of bilayered digraphs.
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We can assign each vertex of a graph one of k colours; the number of
graphs [self-complementary graphs] obtained this way is denoted by g

{k}
n

[g{k}n ]. If, moreover, we assign each vertex a + or − sign, we obtain a k-

coloured signed graph; the total number of such graphs is denoted by g
[k]
n .

The number of such graphs which are invariant under simultaneous comple-
mentation and sign reversal is denoted by g[k]n (our notation differs from that

of Robinson). We can similarly use d
{k}
n , t

{k}
n , r

{k}
n ,and b

{k}
n , for k-coloured

digraphs, tournaments, relations and bilayered digraphs.
It is obvious that g

{1}
n , g{1}n , g

[1]
n and g[1]n are just the number of graphs,

sc-graphs, marked graphs, and self-dual marked graphs (see 7.38 for defini-
tions), respectively; with similar equivalences for other structures. Further,
replacing each + with a loop and each − with no loop, we can see that

d
[k]

2n = r
{k}
2n , while g

[k]
4n gives the number of k-coloured symmetric self-comple-

mentary relations on 4n elements and t
[k]
2n gives the number of k-coloured

anti-symmetric self-complementary relations on 2n elements1.

Robinson showed that d2n+1 = d
[2]

2n = r
{2}
2n , b

[k]
n = d

[k]

2n = r
{k}
2n , g4n+1 = g

[1]
4n,

and t2n+1 = t
[1]
2n.

For the natural bijections which explain the last two identities, see 1.40
and 5.9. Compare 7.23, 7.30 and 7.39, and see 7.59 for an alternating sum
identity. Further results were found by Schwenk [183, eqns. 9, 14] (see [324,
p. 174] for an interpretation) and Robinson [326].

7.12. Denoting the number of self-complementary blocks by g bn, and the
number of self-complementary graphs with exactly two end-vertices by g ′′n,
Akiyama and Harary [12] proved the following (see Chapter 1 for more de-
tails):

Theorem. For any positive integer n ≥ 4 we have

gn = g′′n + g bn
g′′n = gn−4
g bn = gn − gn−4.¤

1A symmetric relation is one where a → b iff b → a; an antisymmetric relation is one
where, for a 6= b, a→ b iff b 6→ a. These concepts should not be confused with symmetric
graphs, i.e. graphs which are both vertex- and edge-transitive.

189



7.13. Palmer [278] modified a method of Oberschelp [275] to find asymptotic
formulas for dn and gn. These methods were also used by Wille to obtain an
asymptotic formula for self-complementary m-ary relations [385] (see 7.29)
and self-complementary r-multigraphs, r odd [386].

Theorem [Palmer 1970, Wille 1978]. The numbers of sc-digraphs, and sc-
r-multigraphs with r = 2k − 1 odd, are given asymptotically by

d2n = g14n ∼
22n

2−2n

n!

d2n+1 ∼
22n

2

n!

g 2k−14n ∼ (2k)2n
2

n!4n

g 2k−14n+1 ∼
(2k)2n

2+n

n!4n
.¤

For r even, no such formula can be given (though Wille gives a com-
plicated asymptotic analysis, which was further explored by Robinson [324,
p.178–9]), but in the classic case of graphs and digraphs we can give more
detailed expressions.

7.14. Theorem [Palmer 1970]. The numbers of self-complementary graphs
and digraphs satisfy

g4n = d2n =
22n

2−2n

n!
(1 + n(n− 1)25−4n +O

(

n3/26n
)

)

g4n+1 =
22n

2−n

n!
(1 + n(n− 1)24−4n +O

(

n3/26n
)

)

d2n+1 =
22n

2

n!
(1 + n(n− 1)23−4n +O

(

n3/26n
)

).¤

7.15. Using 7.13 and 7.14 to calculate first and second approximations,
respectively, Palmer calculated the first few values of gn given in Table 7.1.
Approximations for d2n+1 can also be obtained from those for g4n+1 since it
can be seen that d2n+1 is asymptotic to 2ng4n+1.
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n 1st approx. 2nd approx. gn
4 1 1 1
5 2 2 2
8 8 10 10

9 32 36 36
12 682 715 720
13 5,461 5,589 5,600

16 699,050 703,147 703,760
17 11,184,811 11,217,579 11,220,000

Table 7.1: Self-complementary graphs

Palmer also noted that self-complementary graphs are “scarce” in relation
to graphs with the same number of vertices; even among graphs with the
appropriate number of vertices and edges, they still remain scarce. That is,
if we denote the number of graphs with n vertices [resp. n vertices and k
edges] by gn [resp. gn,k] then

gn
g(n)

→ 0, and

gn
g(n, n(n− 1)/4)

→ 0,

and similar results hold for digraphs.

7.16. We cannot use the number of edges as an enumeration parameter as
all sc-graphs have 1

2

(

n
2

)

edges. However, Parthasarathy and Sridharan [285],
counted self-complementary graphs and digraphs according to their degree
sequence. This can be used to count the number of regular sc-graphs and
-digraphs, thus answering a question posed by Colbourn and Colbourn [94].
However, there is as yet no counting formula for strongly regular sc-graphs;
Rosenberg [331] showed how to generate systematically strongly regular sc-
graphs by solving certain systems of 0 − 1 equations. This approach was
further developed by Mathon [247], but the enumeration of these graphs
just for values of n ≤ 49 (see 3.35) still took up a lengthy paper, albeit
one with extensive results on antimorphisms, block valency matrices, and
automorphism partitions. See also 7.32, and 4.11 for an application of the
Parthasarathy-Sridharan formula.
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Rao [308] counted sc-graphs on n vertices with circumference equal to
n, n − 1 and n − 2, respectively. (There are no other possibilities, as he
showed in [300]). If we denote the number of sc-graphs with n vertices and
circumference n− i by ign, then 2gn is given by

2g4k+ε = 1 +
k−1
∑

i=1

2g4i+ε, for ε = 0, 1.

Moreover

lim
k→∞

2g4k+ε
g4k+ε

= 0.

For the number of triangles in a sc-graph see 2.5, while for the number of
degree sequences of sc-graphs see 6.4 and 6.17.

7.17. While labelled structures are generally easier to handle, the enumer-
ation of labelled self-complementary graphs and digraphs has proved to be
more difficult than the unlabelled case. Xu and Li [394] showed that the
number of labelled sc-graphs with 4, 5, 8 and 9 vertices are 12, 72, 112, 140
and 4, 627, 224, respectively; the values for n = 4, 5 are quickly checked.
Ambrosimov [23] reports an asymptotic formula:

Gn ∼ (n/e)3n/42n
2/8 for n = 4k, and

Gn ∼ n1/4(n/e)3n/42(n
2−1)/8 for n = 4k + 1.

However the values given by this approximation for n = 4, 5, 8 and 9 are 13,
118, 166, 346 and 5, 734, 688, respectively, which seems inconsistent with Xu
and Li’s figures.

Prime order vertex-transitive digraphs2.

7.18. A vertex-transitive (di)graph is one where, for any two vertices u,
v, there is an automorphism mapping u to v. A circulant (di)graph is
one whose vertices can be numbered such that (1, 2, . . . , n) is an automor-
phism of the (di)graph. Turner [373] proved that a connected (di)graph on
a prime number p of vertices is vertex-transitive if and only if it is circulant.

2See the note in 0.13
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Alspach [20] showed that all circulant digraphs are self-converse, and thus
vertex-transitive tournaments on p vertices are self-complementary. Astie [28]
counted the vertex-transitive tournaments, while Chao and Wells [67] showed
that the generating function for vertex-transitive digraphs3 on p vertices, p
prime, is

1

p− 1

∑

d|p−1
φ(d)(1 + xdp)(p−1)/d),

where φ(d) is the Euler function. For the first few primes we have the fol-
lowing generating functions:

p = 2, 1 + x2

p = 3, 1 + x3 + x6

p = 5, 1 + x5 + 2x10 + x15 + x20

p = 7, 1 + x7 + 3x14 + 4x21 + 3x28 + x35 + x42

p = 11, 1 + x11 + 5x22 + 12x33 + 22x44 + 26x55 +

+22x66 + 12x77 + 5x88 + x99 + x110

7.19. Chao and Wells also showed that the automorphism group of a non-
trivial (i.e. non-null and non-complete) prime-order vertex-transitive digraph
is Γα,k := 〈R, σ〉, for some α, k, with the defining relations

Rp = 1, σα = 1, σ−1Rσ = Rk, where α|p− 1 and kα ≡ 1 (mod p).

When α = 1 we get a cyclic group, and the digraph is said to be strongly
vertex-transitive, or svtsc-digraph if it is also self-complementary.

Chia and Lim [78] showed that vertex-transitive self-complementary di-
graphs (vtsc-digraphs) on p vertices are either tournaments or graphs; they
also found many enumeration results for these graphs.

Let c dp,α denote the number of (circulant) vtsc-digraphs with automor-
phism group Γα,k for some k. Then

c dp,α =
2α

p− 1

∑

α||β|(p−1)/2
µ

(

β

α

)

2(p−1)/2β−1

where α||β|(p−1)/2 means that α divides β, β divides (p−1)/2, and β/α = 1
or a product of distinct odd primes.

3In general, these are not self-complementary, even if they have p(p− 1) arcs.
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7.20. Theorem[Chia and Lim 1986]. The numbers of vtsc-graphs, vtsc-
tournaments, vtsc-digraphs, svtsc-digraphs, and vtsc-digraphs with non-cyclic
automorphism group, on a prime number p of vertices, denoted respectively
by c gp , c

t
p, c

d
p , c

′
p and c

′′
p are given by:

c gp =
∑

α|(p−1)/2,
α even

c dp,α

c tp =
∑

α|(p−1)/2,

αodd

c dp,α

c dp =
∑

α|(p−1)/2
c dp,α

c′p = c dp,1

c′′p =
∑

α|(p−1)/2,
α6=1

c dp,α

7.21. It follows from the definitions that c gp + c tp = c dp = c′p + c′′p. Their
numbers are tabulated in Table 7.2 for p ≤ 41.

p c gp c tp c dp c′p c′′p
3 0 1 1 1 0
5 1 1 2 1 1
7 0 2 2 1 1

11 0 4 4 3 1
13 2 6 8 5 3
17 4 16 20 16 4
19 0 30 30 28 2
23 0 94 94 93 1
29 10 586 596 585 11
31 0 1096 1096 1091 5
37 30 7286 7316 7280 36
41 56 26216 26272 26214 58

Table 7.2: Self-complementary circulant graphs and digraphs
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7.22. There are a number of different expressions for these quantities, such
as the following by Chia and Lim:

c′p =
1

p− 1

∑

α|(p−1)/2,
α odd

µ(α)2(p−1)/2α

where µ(n) denotes the classical Möbius function,

µ(n) =







1 if n = 1
(−1)k if n is the product of k distinct primes
0 otherwise

Astie [28] (also quoted in [78, Thm. 4(i)]) and Chao and Wells [68]
both gave further, more complicated, expressions for the number of strongly
vertex-transitive digraphs, while the latter authors gave the following formu-
lation for the number of vtsc-digraphs:

c dp =
1

p− 1





∑

d|p−1
φ(d)

∂(p−1)/d

∂z
(p−1)/d
d



 e2(z2+z4+··· ),

evaluated at z1 = z2 = · · · = 0, where φ is the Euler function. In his
review, Alspach combined their methods with those of his own paper [21] to
give the following result: the number of vtsc-digraphs on p vertices, whose
automorphism group is the transitive group of degree p and order hp, h <
p− 1 is

∑

d|(p−1)/h
µ(d)Z

(

C(p−1)/hd;
∂

∂z1
,
∂

∂z2
, · · ·

)

e2(z2+z4+··· )

evaluated at z1 = z2 = · · · = 0.
We also note that Alspach gave a different expression for c tp in another

paper [20].

7.23. Later on, Klin, Liskovets and Pöschel [222] expressed c gp , c
t
p and c dp in

terms of cycle indices, for odd primes:

c gp = Z(C(p−1)/2; 0, 2, 0, 2, . . .)

c tp = Z(Cp−1;
√
2, 0,
√
2, 0, . . .)

c dp = Z(Cp−1; 0, 2, 0, 2, . . .).¤
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This gives us an interesting counterpart to 7.10.

Corollary[Klin, Liskovets and Pöschel 1996]. If p is an odd prime number
such that 2p− 1 is also prime, then

c g2p−1 = c dp .¤

7.24. Chao and Wells [68, Thm. 2] counted the circulant sc-digraphs on pq
vertices, where p and q are distinct primes, while Klin, Liskovets and Pöschel
did the same for sc-digraphs on p2 vertices.

Theorem. For any odd prime p,

c gp2 = C∗(p2; 0, 2, 0, 2, . . . ; 0, 2, 0, 2, . . .),
c tp2 = C(p2;

√
2, 0,
√
2, 0, . . . ;

√
2, 0,
√
2, 0, . . .),

c dp2 = C(p2; 0, 2, 0, 2, . . . ; 0, 2, 0, 2, . . .),

where

C(p2;x;y) :=
1

p
Z(Zp−1;x

p+1)− 1

p
Z(Zp−1;xy) + Z(Zp−1;x)Z(Zp−1;y),

C∗(p2;x;y) :=
1

p
Z(Zp−1

2
;xp+1)− 1

p
Z(Zp−1

2
;xy) + Z(Zp−1

2
;x)Z(Zp−1

2
;y),
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and xy := (x1y1, x2y2, . . .). More explicitly,

c gp2 =
2

p(p− 1)

∑

2r|(p−1),
r even

φ(r)
(

2(p+1)
(p−1)/2r − 22

(p−1)/2r
)

+

+







2

p− 1

∑

2r|(p−1),
r even

φ(r)2(p−1)/2r







2

c tp2 =
1

p(p− 1)

∑

r|(p−1),

r odd

φ(r)
(

2(p+1)
(p−1)/2r − 22

(p−1)/2r
)

+

+







1

p− 1

∑

r|(p−1),

r odd

φ(r)2(p−1)/2r







2

c dp2 =
1

p(p− 1)

∑

r|(p−1),
r even

φ(r)
(

2(p+1)
(p−1)/r − 22

(p−1)/r
)

+

+







1

p− 1

∑

r|(p−1),
r even

φ(r)2(p−1)/r







2

.¤

7.25. Finally Klin, Liskovets and Pöschel [222]tabulated some values and
proved a number of identities, among which are the following:

Proposition. Let ctn denote the number of circulant tournaments on n
vertices. Then for p an odd prime, p ≡ 3 (mod 4),

c gp2 = 0

c dp2 = c tp2 .¤

The first identity is a special case of a result by Sachs [341] who proved
that there are no self-complementary circulant graphs on p2r vertices when
p is a prime congruent to 3 (mod 4), and of Fronček, Rosa and Širáň [129]
who showed that self-complementary circulant graphs of order n exist iff
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every prime divisor of n is congruent to 1 (mod 4). Since every circulant
tournament is self-complementary, the proposition states that every circulant
self-complementary digraph on p2 vertices is a tournament. Some values of
c gp2 and c dp2 are tabulated in Table 7.3.

p c gp2 c dp2
3 0 3
5 7 214
7 0 399,472

11 0 -
13 56,385,212,104 -
17 - -

19 0 -

Table 7.3: Prime square circulant sc-graphs and -digraphs

Relations and self-converse digraphs

7.26. Unlike self-complementary digraphs, self-converse digraphs can have
any number of edges, so now for each n we want a counting polynomial
d′n(x) which has as the coefficient of xk the number of self-converse digraphs
on n vertices and k edges. For example it can be checked that the counting
polynomial for self-converse digraphs on 3 vertices is

d′3(x) = 1 + x+ 2x2 + 2x3 + 2x4 + x5 + x6.

(See Figure 5.1). A symmetry can be seen in the coefficients, and this will
be true for all d′n(x) because (D)′ = D′.

We also want a counting polynomial for self-converse digraphs with loops
permitted, that is, self-converse relations. The required results were given
by Harary and Palmer [180] (see also 7.38):

Theorem. The counting polynomial for self-converse digraphs on n vertices
is given by

d′n(x) = 2Z(SS2∗
n , 1 + x)− Z(S [2]n , 1 + x).
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The counting polynomial for self-converse relations on n elements is given by

r′n(x) = 2Z(SS2
n , 1 + x)− Z(S2n, 1 + x).¤

Harary and Palmer gave more explicit but much more complex formulas
for d′n(x) and r′n(x) in [180] and also in [182, pp.152–4].

7.27. Harary and Palmer also gave a formula for the total number of self-
converse digraphs on n vertices, and tabulated this, and the number of self-
converse relations and self-complementary digraphs (Table 7.4). The values
for n = 6 are given differently in their book [182, p. 155, 243]; we reproduce
this version here as it is more recent.

Theorem. The total number of self-converse digraphs on n vertices is given
by

d′n = d′n(1) =
1

n!

∑

α∈Sn
2ε(α)

where

ε(α) =
n
∑

k=1

[

〈2, k〉
{

k − 1

2
jk + k

(

jk
2

)}

+ η(k)jk

]

+
∑

1≤r<t≤n
〈2, [r, t]〉〈r, t〉jrjs.¤

7.28. Robinson [325] gave an asymptotic expression for the number of self-
converse digraphs (this corrects a mistaken result given by Sridharan [358]):

d′n ∼
2(n

2−n)/2

n!

(

2n

e

)n/2
e
√
n/2

e1/8
√
2

7.29. Wille [385] tackledm-ary relations over a finite setN = {1, . . . , n}. We
can think of these as a set of ordered m-tuples, or as directed hypergraphs,
with repeated vertices allowed in each edge. The complement of an m-ary
relation R is R = Nm − R, and self-complementary m-ary relations are
defined in the obvious way. We now need a new permutation group, Smn ,
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n dn d′n r′n
1 1 1 2
2 1 3 8
3 4 10 44

4 10 70 436
5 136 708 7,176
6 720 15,248 222,368
7 44,224 543,520
8 703,760

Table 7.4: Self-complementary digraphs, and self-converse digraphs and re-
lations

which is the group of permutations induced on m-tuples by Sn. We note
that since an m-tuple can contain repeated elements S2n 6= S

[2]
n .

Theorem. The number rmn of self-complementary m-ary relations on n ele-
ments is given by

rm2n+1 = 0

rm2n = Z(Sm2n; 0, 2, 0, 2, . . .) =
∑

j

2
∑

s2k

∏

kjkjk!

where the summation is over all partitions j of 2n with jk > 0 only when k
is even, and

s2k =
1

2k

∑

〈r,s〉=2k
[r, s]jrjs.

Asymptotically,

rm2n ∼
2(2n)

m/2

n!2n
.¤

7.30. Corollary. r22n = g4n+1. ¤

7.31. Amixed graph is a graph which can contain both ordinary and oriented
edges. If we consider an ordinary edge to be a symmetric pair of directed
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edges, we see that the mixed graphs on n vertices are just the digraphs on
n vertices, but we can now count them with the number of symmetric pairs
as an enumeration parameter. Sridharan [356] gave the counting formula for
mixed self-complementary graphs, m1(x, y), and mixed self-converse graphs,
m2(x, y), where the coefficient of xryt is the number of mixed graphs with r
directed edges and t ordinary edges.

m1(x, y) =
1

n!

∑

γ∈Sn

∏

k even

2kjk
2/2(xk + yk/2)jk(kjk−2)/2xkjkη(k)/2ykjk(1−η(k))/2

∏

1≤r<t≤n

[

2(x[r,t] + y[r,t]/2)
]〈r,t〉jrjt

m2(x, y) =
1

n!

∑

γ∈Sn

∏

k odd

b
(kjk−1)jk/2
2k

∏

k even

a
(kjk−2)jk/2
k a

η(k)jk
k/2 b

(1−η(k))jk
k

∏

1≤r<t≤n

r and t
both odd

b
〈r,t〉jrjt
2[r,t]

∏

1≤r<t≤n

r and tnot
both odd

a
〈r,t〉jrjt
[r,t]

where

ak = 1 + 2xk + yk,

bk = 1 + yk/2,

and

η(k) =

{

1 if k
2
is odd

0 otherwise

Special types of graphs and digraphs

7.32. An oriented graph is a digraph where no two vertices x and y may be
joined by both (x, y) and (y, x); alternatively, we may look at it as a mixed
graph with no ordinary edges. Harary and Palmer asked for the number of
self-converse oriented graphs in [180]. Sridharan [355] solved this problem,
and also counted the self-complementary oriented graphs, which are just the
sc-tournaments.

Theorem. The number of sc-tournaments is

tn =
1

n!

∑

α∈Bn
2On(α)
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where

Bn = {α ∈ Sn : α has type(1j12j26j610j10 · · · ), with j1 = 1 or 0},
On(α) =

∑

p∈N

p

2
jp
2 +

∑

q<r∈N ′
〈q, r〉jqjr,

N = {2, 6, 10, 14, . . .} and N ′ = {1, 2, 6, 10, 14, . . .}.¤

Hegde and Sridharan [203] counted self-complementary oriented graphs
and self-converse digraphs according to their degree sequence. This gives us
a way of counting regular sc-tournaments, thus solving a problem posed by
Colbourn and Colbourn [94]; see also 7.16.

7.33. Harary and Palmer [182, p. 156] gave a more explicit formula for
sc-tournaments on 2n vertices. Eplett [112] gave a formula for the number
of sc-tournaments on 2n+1 vertices, and noted that both formulas could be
written in terms of partitions of n (rather than partitions of 2n or 2n + 1).
Thus,

t2n =
∑

∏

k

2kj
2
k−jk

∏

r<t

22〈r,t〉jrjt

∏

k

kjkjk!

t2n+1 =
∑

n
∏

r,t=1

2〈r,t〉jrjt

∏

k

kjkjk!

where the summations are over all partitions j of n with jk > 0 only when k
is odd.

7.34. Harary and Palmer [182, p. 215], and later Sridharan [357] gave an
asymptotic formula for the number of sc-tournaments.
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Theorem. The number of sc-tournaments on 2n or 2n+ 1 vertices satisfy

t2n =
2n

2−n

n!

[

1 +
n(n− 1)(n− 2)

3
28−4n +O

(

n5

220n/3

)]

t2n+1 =
2n

2

n!

[

1 +
n(n− 1)(n− 2)

3
26−4n +O

(

n5

220n/3

)]

.¤

Using 2n
2−n/n! and 2n

2
/n! for a first approximation to t2n and t2n+1

respectively, we have the values given in Table 7.5 for the number of sc-
tournaments.

n 1st approx. 2nd approx. tn
3 2 2 2
4 2 2 2
5 8 8 8

6 11 12 12
7 85 88 88
8 171 176 176

9 2,731 2,758 2,752
10 8,738 8,826 8,784
11 279,620 279,962 279,968

Table 7.5: Sc-tournaments

Comparing with the results of 7.13 we see that sc-tournaments are scarce
even among self-complementary digraphs.

7.35. Sridharan [358] also attempted to give an asymptotic formula for the
number of self-converse oriented graphs but Palmer pointed out an error in
his review, and showed that the formula for n = 20 is already too low by a
factor of at least 1010. The problem is that, instead of a single dominant term,
there are an infinite family of terms to consider in the asymptotic treatment.
Robinson [322] did in fact manage to give an asymptotic estimate, but it
is much more complicated than those for other types of graphs. He also
tabulated exact values of the number of self-converse oriented graphs up to
n = 27.
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7.36. A digraph is said to be transitive if the existence of the arcs (a, b)
and (b, c) always implies the existence of the arc (a, c). Hegde, Read and
Sridharan [202] found the structure of transitive self-complementary digraphs
(see 5.10) and counted them, even giving an explicit formula:

Theorem. The number an of transitive self-complementary digraphs on 2n
vertices is the same as the number on 2n + 1 vertices. It is given either by
the generating function

1− x
1− 2x− x2 ,

or by the recurrence relation

an = 2an−1 + an−2

with initial conditions
a0 = a1 = 1,

or by the formula

an =
1

2

{(

1 +
√
2
)n

+
(

1−
√
2
)n}

.¤

7.37. Quinn [291] gave the generating function for gn1,n2
, the number of

non-isomorphic self-complementary bipartite graphs with parts of order n1
and n2, and listed these numbers for n1 ≤ 3 and n2 ≤ 4 (Table 7.6). An
asymptotic expression is given in [294].

n2
n1 1 2 3 4
1 0 1 0 1
2 1 2 3 6
3 0 3 0 7

Table 7.6: Bipartite self-complementary graphs with parts of size n1, n2

7.38. We now give some definitions that will be useful later on. A signed
[marked] graph is one which has a + or − sign on each of its edges [vertices].
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A net is a graph where both edges and vertices are signed. The dual of any of
these types of graphs is obtained by changing all the signs. A signed graph,
marked graph or net is self-dual if it is isomorphic to its dual. For nets, we
also define the edge-dual [vertex-dual], obtained by changing only the signs
on the edges [vertices]; if this is isomorphic to the original net, we say that
it is edge-self-dual [vertex-self-dual]. Thus a net can have three types of self-
duality; a net possessing any two must also possess the third, and so we say
that it is doubly self-dual.

Harary, Palmer, Robinson and Schwenk [183] counted all these types of
structures, except for the doubly self-dual nets; they also provided asymp-
totics and tabulated exact values up to n = 12. Bender and Canfield [35]
re-derived all their results as applications of a more general theorem, and
showed that in each case almost all the graphs are connected, and almost
all the disconnected graphs have just two components, one of them an iso-
lated vertex. Their results also generalize the enumeration of self-converse
digraphs, isographs, mixed graphs and oriented graphs, and the colour cyclic
factorisations of Schwenk described below. Read essentially counted self-dual
signed graphs in [314].

Holroyd [208] managed to enumerate doubly self-dual acyclic and uni-
cyclic nets, but the general case remains open. Palmer and Schwenk [283]
counted necklaces (signed circuits) which are rotationally equivalent to their
dual and their reflection (i.e. there is a rotational automorphism taking them
to their dual, and a rotational automorphism taking them to their reflection).
In general, however, enumerating structures with two different self-dualities
is much more difficult than for structures with just one self-duality. The
class of digraphs which are both self-converse and self-complementary is one
notable open case. Palmer [280] did manage to count the digraphs whose
converse and complement are isomorphic:

d
′
n = 2Z(SS2∗

n ; 0, 2, 0, 2, . . .)− Z(S [2]n ; 0, 2, 0, 2, . . .).

However, this is a problem with two dualities and not self-dualities.

7.39. The sign of any subgraph of a signed graph is defined to be the product
of the signs of all its edges. If every circuit has positive sign, the graph is
said to be balanced. Motivated by this definition, Sozański [354] considered
the concept of weak isomorphism — two signed graphs G1, G2 are weakly
isomorphic if there is an isomorphism between the underlying graphs of G1
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and G2 which preserves the sign of all the circuits. A signed graph is then
said to be weakly self-dual if it is weakly isomorphic to its dual.

Theorem. The number of weak isomorphism classes of complete signed
graphs, and weak isomorphism classes of weakly self-dual complete signed
graphs on n vertices, respectively, is given by

wn =
1

n!

∑

α∈Sn
2I2(α)−I1(α)

wn =
1

n!

∑

α∈Mn

2I2(α)−I1(α)

where α is a permutation with k cycles, I1(α) = k − 1 or k depending on
whether α does or does not have an odd length cycle, I2(α) is the number
of cycles of the permutation which α induces on edges, and Mn is the set of
permuations in Sn that either have all cycles of even length, or have 1 or 2
cycles of length 1 and all other cycles of length divisible by 4. For n ≡ 3
(mod 4), wn = 0. ¤

7.40. Now wn is the number of Eulerian graphs [321], which is also the
number of switching classes [243] and the number of two-graphs [351] on n
vertices. A two-graph is a set of triples from {1, 2, . . . , n} such that any four
vertices contain an even number of triples. A switching class is an equivalence
class under the operation of switching at a vertex; see 4.28 for a definition of
switching, and its use as a self-complement index. A natural bijection with
Eulerian graphs is known only for even n, as in this case each switching class
contains exactly one Eulerian graph.

Meanwhile, wn is equal to the number of sc-two-graphs and, for n =
4k + 1, it is equal to the number of Eulerian sc-graphs on n vertices, which
Robinson [321] showed to be in a natural one-one correspondence with the sc-
graphs on 4k vertices (see 1.40 for the proof). Maybe these correspondences
will help to throw some light on the problems of 7.10, 7.23 and 7.30.

7.41. The situation for Eulerian digraphs is more complex than for undi-
rected graphs. An isograph is a digraph in which, at each vertex, the inde-
gree is equal to the outdegree. An Eulerian digraph is then just a weakly
connected isograph; in particular, Eulerian self-complementary digraphs are
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just the self-complementary isographs. In [361] Sridharan and Parthasarathy
show how to count, for each n,

(a) self-converse isographs with a given number of edges

(b) Eulerian self-converse isographs with a given number of edges

(c) self-complementary isographs

and the oriented versions of these three types of graphs. The procedure
is quite complex and they do not provide explicit formulas. In his review,
Robinson pointed out that the methods proposed for (a) actually count just
those isographs each of whose components is self-converse; and that Harary
and Prins’ methods [184] could be used to get the total number of self-con-
verse isographs.

Colour cyclic factorisations

7.42. In a remarkable paper, Schwenk [348] managed to derive formulas
which contain many of the results listed above as special cases. (His results
are all stated for simple graphs, but analogous results hold for directed graphs
too, and they can probably be extended to many other structures without
difficulty). We start by giving his definition of colour cyclic factorisations.
For an arbitrary graph G, a partition of its edges into k colour classes labelled
0, 1, . . . , k−1 is called a colour cyclic factorisation if G has an automorphism
which cycles the colours, that is, each edge of colour i is mapped to an edge
of colour i + 1 (mod k). When G = Kn we get cyclically k-complementary
graphs studied in 5.51–5.59; in particular, when G = Kn and k = 2 we have
the usual definition of self-complementary graphs. Note that

• the term “cyclic decomposition” has been used by many authors to
mean something quite different from colour cyclic factorisation

• not all isomorphic factorisations are cyclic, as the group which per-
mutes the k isomorphic subgraphs does not always contain Ck. Schwenk
mentioned in particular the case where this group is the Klein four-
group, {I, (AB), (CD), (AB)(CD)}, because it appears in enumera-
tion problems involving two self-dualities, as discussed in 7.38. In [17]
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an infinite class of non-cyclic factorisations of K9k+10 into 9 isomorphic
subgraphs is constructed.

7.43. Schwenk introduced the vector mk to denote a vector whose ith entry
is 1 whenever i is a multiple of k, and 0 otherwise. The vector mk selects
those variables whose subscripts are multiples of k. It can be multiplied by a
scalar, for example 2m3 = (0, 0, 2, 0, 0, 2, . . . ). As defined, mk is an infinite
vector, but it is understood to be appropriately truncated when used in a
cycle index. That is, in Z(Γ;mk), where |Γ| = n, we truncate mk at the nth
position.

The normal automorphism group which permutes the vertices of a graph
G can be denoted by AutV (G). In a natural way, AutV (G) induces a group
of permutations on the edges of G, which we denote by AutE(G). In fact
Sabidussi [339] and Harary and Palmer [181] proved thatAutV (G) ∼= AutE(G)
if and only if G has at most one isolated point, and does not contain K2 as
a component. (By abusing notation we can state this as follows: AutV (G) ∼=
AutE(G) if and only if G does not contain K2 or K2 as a component).

We can now state Schwenk’s result.

7.44. Theorem. The number of colour cyclic factorisations of a graph G
using k colours is Z(AutE(G); kmk). ¤

7.45. Corollary [Harary, Palmer, Robinson and Schwenk 1977]. The num-
ber of self-dual signed graphs whose underlying graph isG is Z(AutE(G); 2m2).

7.46. Corollary [Read 1963]. The number of self-complementary graphs

with n vertices is Z(S
(2)
n ; 2m2. ¤

7.47. A colour cyclic pattern is defined analogously to colour cyclic factori-
sations, except that we now colour the vertices instead of the edges.

Theorem [Schwenk 1984]. The number of colour cyclic patterns for colour-
ing the vertices of G using k colours is Z(AutV (G); kmk). ¤

7.48. Corollary [Harary, Palmer, Robinson and Schwenk 1977].
The number of self-dual marked graphs whose underlying graph is G is
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Z(AutV (G); 2m2). ¤

7.49. Schwenk then considered the problem where both vertices and edges
are coloured. Let the vertices of G be coloured with j labels, and the edges
with k labels. This colouring is called colour cyclic if there is an automor-
phism of G which cycles the vertex and edge labellings in tandem, that is,
it adds 1 to each vertex label and to each edge label. We are not allowed to
cycle vertex or edge labels independently, while holding the other set fixed.

A new cycle index is needed for this problem. Denoted

Z(AutV,E(G);x1, x2, . . . , xn; y1, y2, . . . , ym)

this cycle index has a term for each automorphism γ formed by multi-
plying the corresponding terms from Z(AutV (G);x1, x2, . . . , xn) and from
Z(AutE(G); y1, y2, . . . , ym).

Theorem [Schwenk 1984]. The number of colour cyclic patterns of G using j
colours for the vertices and k colours for the edges is Z(AutV,E(G); jmj; kmk).

7.50. Corollary [Harary, Palmer, Robinson and Schwenk 1977]. The num-
ber of self-dual nets with underlying graph G is Z(AutV,E(G); 2m2; 2m2). ¤

7.51. Schwenk then generalised further by considering what he termed K-
invariant colourings. Let K be a group of the form Zk1×Zk2×· · ·×Zkm , with
〈ki, kj〉 = 1 for all i 6= j. If the edges of G are coloured with k1+k2+ · · ·+km
colours, partitioned into orbits of size k1, k2, . . . , km, such that the colours in
each orbit are cyclically equivalent, then we call this a K-invariant colouring.
K is called a colour group.

The condition 〈ki, kj〉 = 1 implies that every permutation of the colours
can be achieved by repeatedly applying some automorphism of G to the
original colouring. It is not known how to tackle the case where 〈ki, kj〉 6= 1
for some i, j.

Theorem [Schwenk 1984]. If 〈ki, kj〉 = 1 for all i 6= j, then the number of
Zk1 × Zk2 × · · · × Zkm colour invariant factorisations of G is

Z(AutE(G);
n
∑

i=1

kimki).¤
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7.52. The colour group applied to the complete graph Kn can be viewed
as a factorisation using k cyclically equivalent colours and one distinctive
colour. When the distinctive colour is thought of as an invisible or absent
edge, then each such colouring of Kn is just a k-colour cyclic factorisation of
some graph on n vertices.

Corollary. The total number of k-colour cyclic factorisations of all graphs
on n vertices is given by Z(S

(2)
n ;m1 + kmk). In particular [Harary, Palmer,

Robinson and Schwenk 1977], the number of self-dual signed graphs on n

vertices is given by Z(S
(2)
n ;m1 + 2m2). ¤

7.53. Schwenk then extended Palmer’s methods [278] to give asymptotic
formulas for the number of k-colour cyclic factorisations of Kn. Putting k =
2 in this result will give Palmer’s asymptotic formula for the number of self-
complementary graphs. Note that the four cases below cover all the values
of n for which k-colour cyclic factorisations exist.

Theorem. The asymptotic number of k-colour cyclic factorisations of the
complete graph Kn is given by

A. If k is even and n = 2mk,

Z(S(2)n ; kmk) =
km

2k−m

m!2m
(

1 +m(m− 1)22k+1−2mk +O
(

m3/k3mk
))

.

B. If k is even and n = 2mk + 1,

Z(S(2)n ; kmk) =
km

2k

m!2m
(

1 +m(m− 1)k2k−2mk +O
(

m3/k3mk
))

.

C. If k is odd and n = mk,

Z(S(2)n ; kmk) =
k(m

2k−3m)/2

m!

(

1 +

(

m

2

)

kk+2−mk +O
(

m3/k2mk
)

)

D. If k is odd and n = mk + 1,

Z(S(2)n ; kmk) =
k(m

2k−m)/2

m!

(

1 +

(

m

2

)

kk+1−mk +O
(

m3/k2mk
)

)

.¤
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k sc-graphs

n 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1
3 1 1

4 1 1 3
5 1 2 5
6 1 18 25

7 1 135 49
8 1 10 32 343
9 1 36 3,411 128 729

10 1 89,694 39,375 6,561

Table 7.7: k-colour cyclic factorisations of Kn

The exact values of Z(S
(2)
n ; kmk) are given in Table 7.7for n, k ≤ 10.

7.54. It is also possible to obtain asymptotic formulas for the number of
k-colour cyclic factorisations among all graphs with n vertices, that is, to
estimate Z(S

(2)
n ;m1 + kmk). Robinson did this for the case k = 2 (self-dual

signed graphs) but his formula takes up a full page of [183]. This complexity
discouraged Schwenk from treating the general case. As above, however, he
tabulated the exact numbers for n ≤ 10 (Table 7.8).

Self-complementary k-plexes

7.55. A simplicial complex of order n consists of a finite non-empty set
V of n points and a collection of subsets of V called simplexes such that
every point is a simplex and every non-null subset of a simplex is a simplex.
The dimension of a simplex S is |S| − 1; the dimension of a complex is the
maximum dimension of its simplexes. The 0-dimensional complexes are just
null graphs, while 1-dimensional complexes are just the non-null graphs. A
simplicial complex where every maximal simplex has dimension k is said to
be pure or homogeneous.

In [279] Palmer considered k-plexes, where every maximal simplex has
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k graphs self-dual
signed graphs

n 1 2 3 4 5 6 7 8 9 10

1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1

3 4 2 2 1 1 1 1 1 1 1

4 11 6 6 2 1 1 1 1 1 1

5 34 20 14 7 8 2 1 1 1 1

6 156 86 93 32 44 10 1 1 1 1

7 1,044 662 993 107 152 61 74 1 1 2

8 12,346 8,120 7,965 903 404 405 586 92 1 2

9 274,668 171,526 151,152 13,498 908 2,809 2,634 821 1,112 5

10 12,005,168 5,909,259 6,859,540 309,378 204,138 14,830 8,778 7,382 11,112 1,469

Table 7.8: k-colour cyclic factorisations of all graphs

dimension k or 0 (0 < k < n). The complement of a k-plex K of order
n is also a k-plex of order n denoted by K. It has the same set of points
as K, and its set of k-simplexes consists precisely of those which are absent
from K. Thus the self-complementary 1-plexes are just the (non-trivial) self-
complementary graphs. It is easily seen that all self-complementary k-plexes
are connected (compare 1.8), and thus pure; and that there is a natural
bijection between (self-complementary) k + 1-uniform hypergraphs of order
n and (self-complementary) k-plexes.

The appropriate permutation group for k-plexes of order n is S
(k+1)
n , the

group of permutations induced by Sn on the k + 1 subsets of {1, 2, . . . , n}.
Palmer’s result is then as follows:

Theorem. The counting polynomial for k-plexes of order n ≥ k+1 is given
by skn(x) = Z(S

(k+1)
n , 1 + x), and the number of self-complementary k-plexes

of order n is thus s kn = Z(S
(k+1)
n ; 0, 2, 0, 2, . . .). ¤

7.56. There are several things to note about the number of self-complement-
ary k-plexes. First, there are no self-complementary k-plexes unless

(

n
k+1

)

is

even. Secondly, since S
(r)
n and S

(n−r)
n are identical permutation groups, we

have Z(S
(r)
n ) = Z(S

(n−r)
n ) and, putting r = k+1, s kn = sn−k−2n , 1 ≤ k ≤ n−3.
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It is quickly seen that the unique n-simplex of order n is not self-complement-
ary, while there are n/2 self-complementary (n− 2)-simplexes whenever n is
even.

We thus only need to know s kn for 1 ≤ k ≤ (n− 3)/2. Palmer tabulated
these numbers for n ≤ 9 (Table 7.9). He also noted that s28 coincides with
d8, the number of self-complementary digraphs on 8 vertices, because the
polynomials Z(S

(3)
8 ; 0, x2, 0, x4, . . .) and Z(S

[2]
8 ; 0, x2, 0, x4, . . .) are equal; but

that this will not happen again because
(

n
k+1

)

= n(n − 1) only when n = 8
and k = 2 or 4.

k sc-graphs

n 1 2 3
1 1 1 1
2 0 1 1
3 0 0 1

4 1 1 0
5 2 2 0
6 0 40 0

7 0 0 0
8 10 703,760 128
9 36 131,328 16,384

Table 7.9: Self-complementary k-plexes

7.57. The number of k-plexes of order n is given asymptotically by

skn =
2(

n
k+1)

n!
(1 +O

(

n2/2n
)

).

In the self-complementary case, Palmer gave an approximation for k = 2.
The number s2n is 0 only when

(

n
3

)

is odd, that is whenever n ≡ 3 (mod 4).
For an even number of points we have

s22n ∼
2n(n−2)(2n+1)/3

n!

and for n ≡ 1 (mod 4) we have

s24n+1 ∼
2n(16n

2−9/6

2n!
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Self-complementary orbits and functions

7.58. Any permutation group Γ acting on a finite object set X partitions X
into orbits in the usual way. It also induces a partition of X (2), the collection
of all 2-subsets of X, and in general of X (k), where 1 ≤ k ≤ |X|. The subsets
of X(k) obtained in this way are called the k-orbits of Γ, so that 1-orbits are
the usual orbits of Γ. A generalized orbit is a k-orbit for some k. A self-
complementary k-orbit S is one in which, for every k-subset K of S, X −K
is also in S. In particular this implies that k = |K| = |X|/2, so that sc-orbits
cannot occur for permutation groups of odd degree.

If we take X to be the set of all pairs of distinct vertices, and Γ to be
the pair group S

(2)
n , then the k-orbits are just isomorphism classes of graphs

with n vertices and k edges, and self-complementary orbits are just the usual
self-complementary graphs.

This is a very comprehensive concept because most self-complementary
structures can be described as sc-orbits of an appropriate permutation group,
but it does not cover, say, self-dual nets or colour cyclic factorisations. De
Bruijn [51, 52] and Harary and Palmer [179] gave results which implicitly
count the number of self-complementary orbits of an arbitrary permutation
group. More direct proofs were given later by de Bruijn [53], and Frucht and
Harary [131].

Theorem. The counting polynomial for generalized orbits of a permutation
group Γ is

fΓ(x) = Z(Γ; 1 + x, 1 + x2, 1 + x3, . . .),

and the number of self-complementary generalised orbits of Γ is

fΓ = Z(Γ; 0, 2, 0, 2, . . .).¤

7.59. Corollary [Frucht and Harary 1974]. For any permutation group Γ,
if we denote the number of k-orbits by ak(Γ) we have

fΓ =
∑

k

(−1)kak(Γ).
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In particular,

gn =
∑

k

(−1)kgn,k

dn =
∑

k

(−1)kdn,k.

Proof: We can see that fΓ = fΓ(−1), and that fΓ(x) =
∑

k akx
k, from

which the result then follows immediately. ¤

7.60. A (two-coloured) necklace is a signed circuit. We omit the description
“two-coloured”, since all the necklaces we consider here will be of this type.
If we allow only rotational automorphisms, then the number of necklaces
invariant under change of sign (rotationally self-complementary necklaces) is
given by s(C2n) and we have

Z(C2n) =
1

2n

∑

k|2n
φ(k)x

2n/k
k ⇒ s(C2n) =

1

2n

∑

d|n
φ(2d)2n/d

which reduces, for n = p, an odd prime, to

s(C2p) = 1 +
2p−1 − 1

p
.

A much more general and detailed treatment of rotationally sc-necklaces, and
their links to self-reciprocal polynomials, can be found in [254].

If we also allow reflections as automorphisms, then the number of self-
complementary necklaces is just the number of self-complementary orbits of
the dihedral group, s(D2n):

Z(D2n) =
1

2
Z(C2n) +

1

4
(xn2 + x21x2n− 1)⇒ s(D2n) =

1

2
s(C2n) + 2n−2.

This formula implies that s(C2n) is always an even number. Note that the
number of necklaces rotationally equivalent both to their complement and
also to their reflection (rotationally self-complementary achiral necklaces)
found in [283] cannot be deduced with these methods, as it involves two
self-dualities.
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The symmetric group S2n and the alternating group A2n have just one
self-complementary generalised orbit each, while for the identity group E2n

we have

Z(E2n) = x2n1 ⇒ s(E2n) = 0.

7.61. Wille [386] considered an even more general concept by allowing mul-
tiple copies of each element in the object set. Let Γ be a permutation group
acting on the set X, and consider a function f : X → {0, 1, 2, . . . , r}. The
complement of f is defined by f(x) = r − f(x), and a self-complementary
function is one for which there exists γ ∈ Γ such that f(γ(x)) = f(x)∀x ∈ X.
If we take r = 1 we get sc-orbits. If we take D to be the set of all pairs of
distinct vertices from {1, 2, . . . , n}, and Γ to be S

(2)
n , then a sc-function is

just a self-complementary r-multigraph (7.9). If, instead, we take D to be
the set of all ordered pairs, not necessarily distinct, we get the number of
self-complementary relations with r variables on n vertices (7.29).

Theorem. The number of self-complementary functions

f : X → {0, 1, 2, . . . , r},

where X is the object set of a permutation group Γ, is

f
r

Γ = Z(Γ; a, r + 1, a, r + 1, . . .) with a =

{

0, if r is odd,
1, if r is even.

7.62. Finally we note that Harary announced the number of what he called
self-complementary configurations in [177], and these were also treated by
Palmer and Robinson [281]. The latter paper also contains the number of
sc-boolean functions, which is also treated in [110, 196, 197, 272, 282].

7.63. To the reader: If it is true that with each equation the number of
potential readers drops by half, then the mere fact that you have arrived
here would prove that we are far outnumbered by extraterrestrials.
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Open problems

7.64. There are a number of counting problems which still remain unsolved
today, in particular

A. labelled self-complementary graphs [Harary and Palmer 1973, p.217]

B. labelled self-complementary digraphs (ibid.)

C. labelled self-converse digraphs (ibid.)

D. potentially self-complementary degree sequences [Rao 1979a]

E. self-dual digraphs — those which are both self-converse and self-comple-
mentary [Harary 1967]

F. doubly self-dual nets [Harary, Palmer, Robinson and Schwenk 1977]

G. strongly regular sc-graphs

There are also a number of unexplained correspondences. In particular no
one has yet found natural bijections between

H. self-complementary graphs on 4n vertices and self-complementary di-
graphs on 2n vertices;

I. self-complementary relations on 2n vertices and either self-complement-
ary symmetric relations on 4n vertices or self-complementary graphs on
4n+ 1 vertices;

J. self-complementary two-graphs on 4n + 1 vertices and either Eulerian
sc-graphs on 4n+ 1 vertices, or sc-graphs on 4n vertices;

K. circulant self-complementary graphs on 2p − 1 vertices and circulant
self-complementary digraphs on p vertices, where p and 2p−1 are both
odd primes.
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Sci. Budapest L. Eötvös Nom., Sectio Math. 2 (1959) 133–138. MR
24:A1222.

230



[134] T. Gangopadhyay, Studies in multipartite self-complementary graphs,
Ph.D. Thesis, I.S.I. Calcutta (1980).

[135] T. Gangopadhyay, Characterization of forcibly bipartite self-
complementary bipartitioned sequences, in Combinatorics and graph
theory (Calcutta, 1980) Lecture Notes in Math. 885 (1981) 237–260.
MR 83k:05092.

[136] T. Gangopadhyay, Range of diameters in a graph and its bipartite
complement, Ars Combin. 13 (1982a) 41–53. MR 83m:05119.

[137] T. Gangopadhyay, Characterisation of potentially bipartite self-
complementary bipartitioned sequences, Tech. Report No. 4/79, ISI,
Calcutta. Discrete Math. 38 (1982b) 173–184. MR 84e:05088.

[138] T. Gangopadhyay, Range of diameters in a graph and its r-partite
complement, Ars Combin. 18 (1983) 61–80. MR 87e:05116.

[139] T. Gangopadhyay, The class of t-sc graphs and their stable comple-
menting permutations, Ars Combin. 38 (1994) 251–267. MR 96b:05144.

[140] T. Gangopadhyay, On the existence of a stable complementing permu-
tation in a t-sc graph, Ars Combin. 43 (1996) 49–63. MR 97m:05223.

[141] T. Gangopadhyay, Packing graphs in their complement, Discrete Math.
186 (1998) 117–124.

[142] T. Gangopadhyay, On the construction of 3-sc graph, announced.

[143] T. Gangopadhyay, On the existence of a canonical stable complement-
ing permutation for t-sc graph, announced.

[144] T. Gangopadhyay, On a generalization of r-psc graph, announced.

[145] T. Gangopadhyay, Some results on packing graphs in their comple-
ments, Ars Combin. 51 (1999) 269–286.

[146] T. Gangopadhyay and S.P. Rao Hebbare, Structural properties of r-
partite complementing permutations, Tech. Report No. 19/77, ISI, Cal-
cutta (1977).

231



[147] T. Gangopadhyay and S.P. Rao Hebbare, Paths in r-partite self-
complementary graphs, Discrete Math. 32 (1980a) 229–244. MR
82b:05090a.

[148] T. Gangopadhyay and S.P. Rao Hebbare, r-partite self-complementary
graphs—diameters, Discrete Math. 32 (1980b) 245–255. MR
82b:05090b.

[149] T. Gangopadhyay and S.P. Rao Hebbare, Multipartite self-
complementary graphs, Ars Combin. 13 (1982) 87–114. MR 83m:05120.

[150] R.A. Gibbs, Self-Complementary Graphs: Their Structural Proper-
ties and Adjacency Matrices, Ph.D. Thesis, Michigan State University
(1970).

[151] R.A. Gibbs, Self-complementary graphs, J. Combin. Theory (B) 16
(1974) 106–123. MR 50:188.

[152] W. Goddard, M.A. Henning and H.C. Swart, Some Nordhaus-Gaddum-
type results, J. Graph Theory 16 (1992) 221–231. MR 93e:05046.

[153] C.D. Godsil, Hermite polynomials and a duality relation for matching
polynomials, Combinatorica 1 (1981) 257–262.

[154] C.D. Godsil, Algebraic combinatorics, Chapman and Hall (1993) 362
pp.

[155] C.D. Godsil, D.A. Holton and B. McKay, The spectrum of a graph,
Combinatorial mathematics, V (Proc. Fifth Austral. Conf., Roy.
Melbourne Inst. Tech., Melbourne, 1976) 91–117. Lecture Notes in
Math622 (1977) Springer, Berlin. MR 58:27642.

[156] C.D. Godsil and B.D. McKay, Spectral conditions for the recon-
structibility of a graph, J. Combin. Theory (B) 30 (1981) 285–289.

[157] J.M. Goethals and J.J. Seidel, Orthogonal matrices with zero diagonal,
Canad. J. Math. 19 (1967) 1001-1010.

[158] M. Goldberg, The group of the quadratic residue tournament, Canad.
Math. Bull. 13 (1970) 51–54.

232



[159] A.W. Goodman, On sets of acquaintances and strangers at any party,
Amer. Math. Monthly 66 (1959) 778–783. MR 21:6335.

[160] R.L. Graham and J.H. Spencer, A constructive solution to a tourna-
ment problem, Canad. Math. Bull. 14 (1971) 45-48.

[161] D.D. Grant, Stability of line graphs, J. Aust. Math. Soc. (A) 21 (1976)
457–466. MR 55:5483.

[162] A. Granville, A. Moisiadis and R. Rees, On complementary decompo-
sitions of the complete graph, Graphs Combin. 5 (1989) 57–61.

[163] R.E. Greenwood and A.M. Gleason, Combinatorial relations and chro-
matic graphs, Canad. J. Math. 7 (1955) 1–7.

[164] M Grieco and B. Zucchetti, Construction of some classes of self-
converse duality graphs, Ars Combin. 24A (1987) 9–19.
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